Fusing and filtering arrogant classifiers

A. L. Magnus, M. Oxley
{"title":"Fusing and filtering arrogant classifiers","authors":"A. L. Magnus, M. Oxley","doi":"10.1109/ICIF.2002.1021179","DOIUrl":null,"url":null,"abstract":"Given a finite collection of classifiers trained on n-class data, one wishes to fuse the classifiers to form a new classifier with improved performance. Typically, the fusion is performed on the output level using logical ANDs and ORs. Sometimes classifiers are arrogant and will classify a feature vector without any prior experience (data) to justify their decision. The proposed fusion is based on the arrogance of the classifier and the location of the feature vector in respect to training data. Given a feature vector x, if any one of the classifiers is an expert on x then that classifier should dominate the fusion. If the classifiers are confused at x then the fusion rule should be defined in such a way to reflect this confusion. If the classifier is arrogant, then its results should not be considered and, thus, filtered out from the fusion process. We give this fusion rule based upon the metrics of veracity and experience.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a finite collection of classifiers trained on n-class data, one wishes to fuse the classifiers to form a new classifier with improved performance. Typically, the fusion is performed on the output level using logical ANDs and ORs. Sometimes classifiers are arrogant and will classify a feature vector without any prior experience (data) to justify their decision. The proposed fusion is based on the arrogance of the classifier and the location of the feature vector in respect to training data. Given a feature vector x, if any one of the classifiers is an expert on x then that classifier should dominate the fusion. If the classifiers are confused at x then the fusion rule should be defined in such a way to reflect this confusion. If the classifier is arrogant, then its results should not be considered and, thus, filtered out from the fusion process. We give this fusion rule based upon the metrics of veracity and experience.
融合和过滤自大分类器
给定在n类数据上训练的有限分类器集合,人们希望融合这些分类器以形成具有改进性能的新分类器。通常,融合是使用逻辑and和or在输出级别上执行的。有时分类器很傲慢,会在没有任何先前经验(数据)的情况下对特征向量进行分类。所提出的融合是基于分类器的傲慢和特征向量相对于训练数据的位置。给定一个特征向量x,如果任何一个分类器是x的专家,那么该分类器应该在融合中占主导地位。如果分类器在x处混淆,则融合规则应该以反映这种混淆的方式定义。如果分类器是傲慢的,那么它的结果不应该被考虑,因此,从融合过程中过滤掉。我们给出了基于准确性和经验度量的融合规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信