Gait Recognition Through MPCA Plus LDA

Haiping Lu, K. Plataniotis, A. Venetsanopoulos
{"title":"Gait Recognition Through MPCA Plus LDA","authors":"Haiping Lu, K. Plataniotis, A. Venetsanopoulos","doi":"10.1109/BCC.2006.4341613","DOIUrl":null,"url":null,"abstract":"This paper solves the gait recognition problem in a multilinear principal component analysis (MPCA) framework. Gait sequences are naturally described as tensor objects and feature extraction for tensor objects is important in computer vision and pattern recognition applications. Classical principal component analysis (PCA) operates on vectors and it is not directly applicable to gait sequences. This work introduces an MPCA framework for feature extraction from gait sequences by seeking a multilinear projection onto a tensor subspace of lower dimensionality which captures most of the variance of the original gait samples. A subset of the extracted eigen-tensors are selected and the classical LDA is then applied. In experiments, gait recognition results are reported on the Gait Challenge data sets using the proposed solution. The results indicate that with a simple design, the proposed algorithm outperforms the state-of-the-art algorithms.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper solves the gait recognition problem in a multilinear principal component analysis (MPCA) framework. Gait sequences are naturally described as tensor objects and feature extraction for tensor objects is important in computer vision and pattern recognition applications. Classical principal component analysis (PCA) operates on vectors and it is not directly applicable to gait sequences. This work introduces an MPCA framework for feature extraction from gait sequences by seeking a multilinear projection onto a tensor subspace of lower dimensionality which captures most of the variance of the original gait samples. A subset of the extracted eigen-tensors are selected and the classical LDA is then applied. In experiments, gait recognition results are reported on the Gait Challenge data sets using the proposed solution. The results indicate that with a simple design, the proposed algorithm outperforms the state-of-the-art algorithms.
基于MPCA和LDA的步态识别
本文在多线性主成分分析(MPCA)框架下解决步态识别问题。步态序列通常被描述为张量对象,张量对象的特征提取在计算机视觉和模式识别应用中非常重要。经典的主成分分析(PCA)是基于向量的,不能直接应用于步态序列分析。这项工作引入了一个MPCA框架,通过在低维张量子空间上寻找一个多线性投影,从步态序列中提取特征,该投影捕获了原始步态样本的大部分方差。从提取的特征张量中选择一个子集,然后应用经典的LDA。在实验中,使用该方法在步态挑战数据集上报告了步态识别结果。结果表明,该算法设计简单,性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信