Implementations of a feature-based visual tracking algorithm on two MIMD machines

M. B. Kulaczewski, H. Siegel
{"title":"Implementations of a feature-based visual tracking algorithm on two MIMD machines","authors":"M. B. Kulaczewski, H. Siegel","doi":"10.1109/ICPP.1997.622676","DOIUrl":null,"url":null,"abstract":"As an example of a task that processes complex visual information to generate control signals for a system, an existing feature-based visual tracking algorithm for a static camera was mapped onto two parallel machines representing the MIMD execution model. The algorithm is described and a version suitable for mapping onto parallel machines is developed. Timing results for the implementation on the Intel Paragon and the IBM SP2 are presented, using real image data for all experiments. For each subtask of the algorithm, its performance is measured as a function of data layout. In addition, the impact of the time required to distribute image data across processing elements on the performance is considered. For the subtask of finding the best match of a feature in an image, load balancing approaches dependent on machine characteristics and submachine size are discussed. This type of matching is used in many vision tasks.","PeriodicalId":221761,"journal":{"name":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1997.622676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As an example of a task that processes complex visual information to generate control signals for a system, an existing feature-based visual tracking algorithm for a static camera was mapped onto two parallel machines representing the MIMD execution model. The algorithm is described and a version suitable for mapping onto parallel machines is developed. Timing results for the implementation on the Intel Paragon and the IBM SP2 are presented, using real image data for all experiments. For each subtask of the algorithm, its performance is measured as a function of data layout. In addition, the impact of the time required to distribute image data across processing elements on the performance is considered. For the subtask of finding the best match of a feature in an image, load balancing approaches dependent on machine characteristics and submachine size are discussed. This type of matching is used in many vision tasks.
基于特征的视觉跟踪算法在两台MIMD机器上的实现
作为处理复杂视觉信息以生成系统控制信号的任务示例,将现有的基于特征的静态相机视觉跟踪算法映射到代表MIMD执行模型的两台并行机器上。对该算法进行了描述,并开发了一种适用于并行机映射的算法。给出了在Intel Paragon和IBM SP2上使用真实图像数据进行所有实验的时序结果。对于算法的每个子任务,其性能作为数据布局的函数来衡量。此外,还考虑了跨处理元素分发图像数据所需的时间对性能的影响。对于寻找图像中特征的最佳匹配子任务,讨论了依赖于机器特征和子机器大小的负载平衡方法。这种类型的匹配在许多视觉任务中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信