{"title":"Quasi-Hadamard matrix","authors":"Ki-Hyeon Park, Hong‐Yeop Song","doi":"10.1109/ISIT.2010.5513675","DOIUrl":null,"url":null,"abstract":"We apply the Hadamard equivalence to all the binary matrices of size m × n and study various properties of this equivalence relation and its classes. We propose to use HR-minimal as a representative of each equivalence class and count the number of HR-minimals of size m × n for m ≤ 3. Some properties and constructions of HR-minimals are investigated. HR-minimals with the largest weight on its second row are defined as Quasi-Hadamard matrices, which are very similar to Hadamard matrices in terms of the absolute correlations of pairs of rows, in the sense that they give a set of row vectors with “best possible orthogonality.” We report lots of exhaustive search results and open problems, one of which is equivalent to the Hadamard conjecture.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We apply the Hadamard equivalence to all the binary matrices of size m × n and study various properties of this equivalence relation and its classes. We propose to use HR-minimal as a representative of each equivalence class and count the number of HR-minimals of size m × n for m ≤ 3. Some properties and constructions of HR-minimals are investigated. HR-minimals with the largest weight on its second row are defined as Quasi-Hadamard matrices, which are very similar to Hadamard matrices in terms of the absolute correlations of pairs of rows, in the sense that they give a set of row vectors with “best possible orthogonality.” We report lots of exhaustive search results and open problems, one of which is equivalent to the Hadamard conjecture.