Quasi-Hadamard matrix

Ki-Hyeon Park, Hong‐Yeop Song
{"title":"Quasi-Hadamard matrix","authors":"Ki-Hyeon Park, Hong‐Yeop Song","doi":"10.1109/ISIT.2010.5513675","DOIUrl":null,"url":null,"abstract":"We apply the Hadamard equivalence to all the binary matrices of size m × n and study various properties of this equivalence relation and its classes. We propose to use HR-minimal as a representative of each equivalence class and count the number of HR-minimals of size m × n for m ≤ 3. Some properties and constructions of HR-minimals are investigated. HR-minimals with the largest weight on its second row are defined as Quasi-Hadamard matrices, which are very similar to Hadamard matrices in terms of the absolute correlations of pairs of rows, in the sense that they give a set of row vectors with “best possible orthogonality.” We report lots of exhaustive search results and open problems, one of which is equivalent to the Hadamard conjecture.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We apply the Hadamard equivalence to all the binary matrices of size m × n and study various properties of this equivalence relation and its classes. We propose to use HR-minimal as a representative of each equivalence class and count the number of HR-minimals of size m × n for m ≤ 3. Some properties and constructions of HR-minimals are investigated. HR-minimals with the largest weight on its second row are defined as Quasi-Hadamard matrices, which are very similar to Hadamard matrices in terms of the absolute correlations of pairs of rows, in the sense that they give a set of row vectors with “best possible orthogonality.” We report lots of exhaustive search results and open problems, one of which is equivalent to the Hadamard conjecture.
Quasi-Hadamard矩阵
我们将Hadamard等价应用于所有大小为m × n的二元矩阵,并研究了该等价关系及其类的各种性质。我们建议使用hr - minimum作为每个等价类的代表,并计算m≤3时大小为m × n的hr - minimum的个数。研究了hr极小值的一些性质和构造。第二行权值最大的hr最小值被定义为拟阿达玛矩阵,就行对的绝对相关性而言,它与阿达玛矩阵非常相似,因为它们给出了一组具有“最佳可能正交性”的行向量。我们报告了大量的穷举搜索结果和开放问题,其中一个等价于Hadamard猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信