Sachin Kalia, M. Elbadry, B. Sadhu, S. Patnaik, J. Qiu, R. Harjani
{"title":"A simple, unified phase noise model for injection-locked oscillators","authors":"Sachin Kalia, M. Elbadry, B. Sadhu, S. Patnaik, J. Qiu, R. Harjani","doi":"10.1109/RFIC.2011.5940707","DOIUrl":null,"url":null,"abstract":"This paper presents a simple, unified phase noise model for injection-locked oscillators (ILO). We show that an ILO is identical to a type-I first-order PLL in its noise behavior within the lock range. The model predicts the phase noise of injection-locked oscillators (ILO), injection-locked frequency dividers (ILFD), and injection-locked frequency multipliers (ILFM) as a function of the injection source phase noise and the oscillator phase noise. Measurement results from a discrete 57MHz Colpitts ILO, an integrated 6.5GHz ILFD, and an integrated 24GHz ILFM are presented to validate the theoretical predictions.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
This paper presents a simple, unified phase noise model for injection-locked oscillators (ILO). We show that an ILO is identical to a type-I first-order PLL in its noise behavior within the lock range. The model predicts the phase noise of injection-locked oscillators (ILO), injection-locked frequency dividers (ILFD), and injection-locked frequency multipliers (ILFM) as a function of the injection source phase noise and the oscillator phase noise. Measurement results from a discrete 57MHz Colpitts ILO, an integrated 6.5GHz ILFD, and an integrated 24GHz ILFM are presented to validate the theoretical predictions.