On the Upper Cone of Degrees Containing Hypersimple T-Mitotic Sets Which are not wtt-Mitotic

Arsen H. Mokatsian
{"title":"On the Upper Cone of Degrees Containing Hypersimple T-Mitotic Sets Which are not wtt-Mitotic","authors":"Arsen H. Mokatsian","doi":"10.1109/CSITechnol.2019.8895074","DOIUrl":null,"url":null,"abstract":"Let us adduce some definitions. If A is a nonrecursive computably enumerable (c.e.) set, then a splitting of A is a pair A<inf>1</inf>, A<inf>2</inf> of disjoint c.e. sets such that A<inf>1</inf> U A<inf>2</inf> = A.A c.e. set A is T-mitotic (wtt-mitotic) if there is a splitting A<inf>1</inf>, A<inf>2</inf> of A such that A<inf>1</inf> ≡<inf>T</inf> A<inf>2</inf>≡<inf>T</inf> A (A<inf>1</inf> ≡<inf>wtt</inf> A<inf>2</inf>≡<inf>wtt</inf> A).In this article it is proved, that there exists a low c.e. degree u such that if v is a c.e. degree and u ≤ v, then v contains a hypersimple T-mitotic set, which is not wtt-mitotic.","PeriodicalId":414834,"journal":{"name":"2019 Computer Science and Information Technologies (CSIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computer Science and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSITechnol.2019.8895074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let us adduce some definitions. If A is a nonrecursive computably enumerable (c.e.) set, then a splitting of A is a pair A1, A2 of disjoint c.e. sets such that A1 U A2 = A.A c.e. set A is T-mitotic (wtt-mitotic) if there is a splitting A1, A2 of A such that A1T A2T A (A1wtt A2wtt A).In this article it is proved, that there exists a low c.e. degree u such that if v is a c.e. degree and u ≤ v, then v contains a hypersimple T-mitotic set, which is not wtt-mitotic.
包含非wtt-有丝分裂的超简单t-有丝分裂集的上锥度
让我们引证一些定义。如果A是一个nonrecursive可计算的枚举(公元)组,然后分裂的是一对A1, A2的着力点的A1 U A2 =一位刚建成时设置一个T-mitotic (wtt-mitotic)如果有分裂A1, A2的(A1, A2≡≡T T (A1≡≡wtt A2 wtt)。本文证明,存在一个低石球学位你这样如果v是一个石球程度和U≤v, v包含hypersimple T-mitotic集,这不是wtt-mitotic。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信