Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization

Assia Belherazem, R. Tlemsani
{"title":"Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization","authors":"Assia Belherazem, R. Tlemsani","doi":"10.4018/ijaiml.308815","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid text classification model that combines 1D CNN with a single Bidirectional Fast GRU (BiFaGRU) termed as CNN-BiFaGRU. Single convolution layer captures features through a kernel applying 128 filters which are slide over these embeds to find convolutions and drop entire 1D feature maps by using Spatial Dropout, combined vectors using Max-Pooling layer. Then, the Bidirectional CUDNNGRU block to extract temporal features, results of this layer is normalize by the Batch Normalization layer and transmitted to the Fully Connected Layer. The output layer produces the final classification results. Precision/loss score was used as the main criterion on five different datasets (WebKb, R8, R52, AG-News, and 20 NG) to assess the performance of the proposed model. The results indicate that the precision score of the classifier on WebKb, R8, and R52 data sets significantly improved from 90% up to 97% compared to the best result achieved by other methods such as LSTM and Bi-LSTM. Thus, the proposed model shows higher precision and lower loss scores than other methods.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.308815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a hybrid text classification model that combines 1D CNN with a single Bidirectional Fast GRU (BiFaGRU) termed as CNN-BiFaGRU. Single convolution layer captures features through a kernel applying 128 filters which are slide over these embeds to find convolutions and drop entire 1D feature maps by using Spatial Dropout, combined vectors using Max-Pooling layer. Then, the Bidirectional CUDNNGRU block to extract temporal features, results of this layer is normalize by the Batch Normalization layer and transmitted to the Fully Connected Layer. The output layer produces the final classification results. Precision/loss score was used as the main criterion on five different datasets (WebKb, R8, R52, AG-News, and 20 NG) to assess the performance of the proposed model. The results indicate that the precision score of the classifier on WebKb, R8, and R52 data sets significantly improved from 90% up to 97% compared to the best result achieved by other methods such as LSTM and Bi-LSTM. Thus, the proposed model shows higher precision and lower loss scores than other methods.
基于双向快速门控循环单元的文本分类增强卷积神经网络
本文提出了一种混合文本分类模型,该模型将1D CNN与单个双向快速GRU (BiFaGRU)相结合,称为CNN-BiFaGRU。单个卷积层通过应用128个过滤器的内核捕获特征,这些过滤器在这些嵌入上滑动以查找卷积并通过使用空间Dropout删除整个1D特征图,使用最大池化层组合向量。然后,将双向CUDNNGRU块提取时间特征,该层的结果通过批处理归一化层进行归一化并传输到完全连接层。输出层产生最终的分类结果。在5个不同的数据集(WebKb、R8、R52、AG-News和20 NG)上使用精度/损失评分作为主要标准来评估所提出模型的性能。结果表明,与LSTM和Bi-LSTM等其他方法相比,该分类器在WebKb、R8和R52数据集上的精度分数从90%提高到97%。因此,与其他方法相比,该模型具有更高的精度和更低的损失分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信