Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution

Yuki Kondo, N. Ukita
{"title":"Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution","authors":"Yuki Kondo, N. Ukita","doi":"10.23919/MVA51890.2021.9511400","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for crack segmentation on low-resolution images. Detailed cracks on their high-resolution images are estimated by super resolution from the low-resolution images. Our proposed method*1optimizes super-resolution images for the crack segmentation. For this method, we propose the Boundary Combo loss to express the local details of the crack. Experimental results demonstrate that our method outperforms the combinations of other previous approaches.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a method for crack segmentation on low-resolution images. Detailed cracks on their high-resolution images are estimated by super resolution from the low-resolution images. Our proposed method*1optimizes super-resolution images for the crack segmentation. For this method, we propose the Boundary Combo loss to express the local details of the crack. Experimental results demonstrate that our method outperforms the combinations of other previous approaches.
基于超分辨率联合学习的低分辨率图像裂纹分割
提出了一种低分辨率图像的裂纹分割方法。通过对低分辨率图像的超分辨率估计其高分辨率图像上的详细裂缝。我们提出的方法*1优化了超分辨率图像的裂缝分割。对于这种方法,我们提出了边界组合损失来表达裂缝的局部细节。实验结果表明,我们的方法优于其他方法的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信