Speaker identification using hidden Markov models

M. Inman, D. Danforth, S. Hangai, K. Sato
{"title":"Speaker identification using hidden Markov models","authors":"M. Inman, D. Danforth, S. Hangai, K. Sato","doi":"10.1109/ICOSP.1998.770285","DOIUrl":null,"url":null,"abstract":"In this study, we show that the use of hidden Markov models (HMMs) significantly enhances the success rate of speaker identification over time. The segment boundary information derived from HMMs provides a means of normalizing the formant patterns obtained from a digital cochlear filter, which we also describe. The use of the digital cochlear filter and HMMs in our study was motivated by two well-known problems in speech recognition generally, i.e. phonetic tempo variability and variability over temporal units of a given length, typically days. We show how these problems can be minimized to achieve more robust speaker identification.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this study, we show that the use of hidden Markov models (HMMs) significantly enhances the success rate of speaker identification over time. The segment boundary information derived from HMMs provides a means of normalizing the formant patterns obtained from a digital cochlear filter, which we also describe. The use of the digital cochlear filter and HMMs in our study was motivated by two well-known problems in speech recognition generally, i.e. phonetic tempo variability and variability over temporal units of a given length, typically days. We show how these problems can be minimized to achieve more robust speaker identification.
使用隐马尔可夫模型识别说话人
在这项研究中,我们发现随着时间的推移,隐马尔可夫模型(hmm)的使用显著提高了说话人识别的成功率。从hmm中得到的段边界信息提供了一种归一化从数字耳蜗滤波器中得到的峰模式的方法,我们也描述了这一点。在我们的研究中,数字耳蜗滤波器和hmm的使用是由语音识别中两个众所周知的问题所驱动的,即语音节奏变异性和给定长度(通常是天)的时间单位的变异性。我们展示了如何将这些问题最小化以实现更稳健的说话人识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信