Weakly structured information aggregation for upper-body posture assessment using ConvNets

Zewei Ding, W. Li, Pichao Wang, P. Ogunbona, Ling Qin
{"title":"Weakly structured information aggregation for upper-body posture assessment using ConvNets","authors":"Zewei Ding, W. Li, Pichao Wang, P. Ogunbona, Ling Qin","doi":"10.1109/ICME.2017.8019410","DOIUrl":null,"url":null,"abstract":"Posture assessment aims to determine the risk associated with poor posture and thus avoid injury in subjects. Upper-body posture assessment from images offers an attractive alternative to manual methods by directly extracting relevant features for classification. A deep convolutional neural network is proposed to extract structured features from different body parts and learn shared features that are used to determine the appropriate assessment. The structured features are learned with triplet-based rank constraints based on head and torso separately. The shared feature and assessment function are learned with soft-max constraints based on posture risk measurements. Experimental evaluation on a self-collected upper-body posture dataset has verified the efficacy of the proposed method and network architecture.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Posture assessment aims to determine the risk associated with poor posture and thus avoid injury in subjects. Upper-body posture assessment from images offers an attractive alternative to manual methods by directly extracting relevant features for classification. A deep convolutional neural network is proposed to extract structured features from different body parts and learn shared features that are used to determine the appropriate assessment. The structured features are learned with triplet-based rank constraints based on head and torso separately. The shared feature and assessment function are learned with soft-max constraints based on posture risk measurements. Experimental evaluation on a self-collected upper-body posture dataset has verified the efficacy of the proposed method and network architecture.
基于卷积神经网络的上半身姿态评估弱结构信息聚合
姿势评估的目的是确定不良姿势的相关风险,从而避免受试者受伤。从图像中提取相关特征进行分类,为人工方法提供了一个有吸引力的替代方法。提出了一种深度卷积神经网络,从不同的身体部位提取结构化特征,并学习共享特征,用于确定适当的评估。结构特征分别基于头部和躯干的基于三重的秩约束进行学习。在基于姿态风险测量的软最大约束下学习共享特征和评估函数。在自采集的上半身姿态数据集上进行的实验评估验证了该方法和网络架构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信