Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation with Exemplars

Taoseef Ishtiak, Qing En, Yuhong Guo
{"title":"Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation with Exemplars","authors":"Taoseef Ishtiak, Qing En, Yuhong Guo","doi":"10.1109/CVPR52729.2023.01480","DOIUrl":null,"url":null,"abstract":"Instance segmentation seeks to identify and segment each object from images, which often relies on a large number of dense annotations for model training. To alleviate this burden, unsupervised instance segmentation methods have been developed to train class-agnostic instance segmentation models without any annotation. In this paper, we propose a novel unsupervised instance segmentation approach, Exemplar-FreeSOLO, to enhance unsupervised instance segmentation by exploiting a limited number of unannotated and unsegmented exemplars. The proposed framework offers a new perspective on directly perceiving top-down information without annotations. Specifically, Exemplar-FreeSOLO introduces a novel exemplar-knowledge abstraction module to acquire beneficial top-down guidance knowledge for instances using unsupervised exemplar object extraction. Moreover, a new exemplar embedding contrastive module is designed to enhance the discriminative capability of the segmentation model by exploiting the contrastive exemplar-based guidance knowledge in the embedding space. To evaluate the proposed Exemplar-FreeSOLO, we conduct comprehensive experiments and perform in-depth analyses on three image instance segmentation datasets. The experimental results demonstrate that the proposed approach is effective and outperforms the state-of-the-art methods.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Instance segmentation seeks to identify and segment each object from images, which often relies on a large number of dense annotations for model training. To alleviate this burden, unsupervised instance segmentation methods have been developed to train class-agnostic instance segmentation models without any annotation. In this paper, we propose a novel unsupervised instance segmentation approach, Exemplar-FreeSOLO, to enhance unsupervised instance segmentation by exploiting a limited number of unannotated and unsegmented exemplars. The proposed framework offers a new perspective on directly perceiving top-down information without annotations. Specifically, Exemplar-FreeSOLO introduces a novel exemplar-knowledge abstraction module to acquire beneficial top-down guidance knowledge for instances using unsupervised exemplar object extraction. Moreover, a new exemplar embedding contrastive module is designed to enhance the discriminative capability of the segmentation model by exploiting the contrastive exemplar-based guidance knowledge in the embedding space. To evaluate the proposed Exemplar-FreeSOLO, we conduct comprehensive experiments and perform in-depth analyses on three image instance segmentation datasets. The experimental results demonstrate that the proposed approach is effective and outperforms the state-of-the-art methods.
用样例增强无监督实例分割
实例分割旨在从图像中识别和分割每个对象,这通常依赖于大量密集的注释来进行模型训练。为了减轻这一负担,人们开发了无监督实例分割方法来训练不需要任何注释的类无关的实例分割模型。在本文中,我们提出了一种新的无监督实例分割方法,即Exemplar-FreeSOLO,通过利用有限数量的未注释和未分割的样本来增强无监督实例分割。提出的框架提供了一个新的视角,直接感知自上而下的信息,而不需要注释。具体来说,exemplar- freesolo引入了一种新的范例知识抽象模块,通过无监督的范例对象提取,为实例获取有益的自上而下的指导知识。在此基础上,设计了一种新的样例嵌入对比模块,利用嵌入空间中基于对比样例的引导知识,增强分割模型的判别能力。为了评估所提出的Exemplar-FreeSOLO,我们在三个图像实例分割数据集上进行了全面的实验和深入的分析。实验结果表明,该方法是有效的,并且优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信