Crossover operators with adaptive probability

Mu-Song Chen, Fong Hang Liao
{"title":"Crossover operators with adaptive probability","authors":"Mu-Song Chen, Fong Hang Liao","doi":"10.1109/IJSIS.1998.685408","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) are adaptive methods, which can be employed to solve search and optimization problems. The GA relies on genetic operators to exchange gene between individuals for generating better offspring. An important issue to execute GA efficiently is to maintain population diversity and to sustain local improvement in the search stage. However, both effects always hinder each other. We propose to apply different kinds of crossover operators, i.e. arithmetic and BLX-/spl alpha/ crossovers, to control the diversity and convergence of the GA in continuous-space framework. We also utilize self-adaptation method to control the probability of crossover such that the balance of exploitation and exploration can be kept. It is shown empirically that the proposed methods outperform the classical GA strategy on several benchmark functions.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Genetic algorithms (GAs) are adaptive methods, which can be employed to solve search and optimization problems. The GA relies on genetic operators to exchange gene between individuals for generating better offspring. An important issue to execute GA efficiently is to maintain population diversity and to sustain local improvement in the search stage. However, both effects always hinder each other. We propose to apply different kinds of crossover operators, i.e. arithmetic and BLX-/spl alpha/ crossovers, to control the diversity and convergence of the GA in continuous-space framework. We also utilize self-adaptation method to control the probability of crossover such that the balance of exploitation and exploration can be kept. It is shown empirically that the proposed methods outperform the classical GA strategy on several benchmark functions.
具有自适应概率的交叉算子
遗传算法是一种自适应算法,可以用来解决搜索和优化问题。遗传算法依靠遗传算子在个体之间交换基因以产生更好的后代。有效执行遗传算法的一个重要问题是在搜索阶段保持种群多样性和局部改进。然而,这两种影响总是相互阻碍的。我们提出使用不同的交叉算子,即算术和BLX-/spl alpha/交叉算子来控制遗传算法在连续空间框架中的多样性和收敛性。利用自适应方法控制交叉概率,使开采与勘探保持平衡。经验表明,该方法在多个基准函数上优于经典遗传策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信