Bayesian tree-structured image modeling

J. Romberg, Hyeokho Choi, Richard Baraniuk
{"title":"Bayesian tree-structured image modeling","authors":"J. Romberg, Hyeokho Choi, Richard Baraniuk","doi":"10.1109/IAI.2000.839605","DOIUrl":null,"url":null,"abstract":"Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this paper, we propose two reduced-parameter HMT models that capture the general structure of a broad class of grayscale images. The image HMT (iHMT) model leverages the fact that for a large class of images the structure of the HMT is self-similar across scale. This allows us to reduce the complexity of the iHMT to just nine easily trained parameters (independent of the size of the image and the number of wavelet scales). In the universal HMT (uHMT) we take a Bayesian approach and fix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structures modeled by the full HMT. Based on these new models, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this paper, we propose two reduced-parameter HMT models that capture the general structure of a broad class of grayscale images. The image HMT (iHMT) model leverages the fact that for a large class of images the structure of the HMT is self-similar across scale. This allows us to reduce the complexity of the iHMT to just nine easily trained parameters (independent of the size of the image and the number of wavelet scales). In the universal HMT (uHMT) we take a Bayesian approach and fix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structures modeled by the full HMT. Based on these new models, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature.
贝叶斯树结构图像建模
小波域隐马尔可夫模型已被证明是统计信号和图像处理的有用工具。隐马尔可夫树(HMT)模型捕捉了真实数据的小波系数联合统计的关键特征。HMT框架的一个潜在缺点是需要计算昂贵的迭代训练(例如,使用EM算法)。在本文中,我们提出了两种减少参数的HMT模型,它们捕获了大类灰度图像的一般结构。图像HMT (iHMT)模型利用了这样一个事实,即对于大量图像,HMT的结构在整个尺度上是自相似的。这允许我们将iHMT的复杂性降低到只有9个易于训练的参数(与图像的大小和小波尺度的数量无关)。在通用HMT (uHMT)中,我们采用贝叶斯方法确定这9个参数。uHMT不需要任何形式的培训。虽然简单,但我们通过一系列图像估计/去噪实验表明,这两个新模型几乎保留了由完整HMT建模的所有关键结构。基于这些新模型,我们开发了一种优于当前文献中所有算法的平移不变小波去噪方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信