Proximal optimization for resource allocation in distributed computing systems with data locality

Diego Goldsztajn, F. Paganini, Andrés Ferragut
{"title":"Proximal optimization for resource allocation in distributed computing systems with data locality","authors":"Diego Goldsztajn, F. Paganini, Andrés Ferragut","doi":"10.1109/ALLERTON.2019.8919839","DOIUrl":null,"url":null,"abstract":"We consider resource allocation questions for computing infrastructures with multiple server instances. In particular, the joint optimization of active service capacity, load balancing between clusters of servers, and task scheduling at each cluster, under conditions of data locality which imply different service rates for different cluster locations.Building on previous work, we formulate a convex optimization problem, and use Lagrange duality to decompose it between the different decision variables. We include regularization terms from proximal methods to obtain continuous control laws for load balancing and scheduling, and optimize the remaining variables through primal-dual gradient dynamics. We prove convergence of the resulting control laws to the desired optimal points, and demonstrate its behavior by simulations.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider resource allocation questions for computing infrastructures with multiple server instances. In particular, the joint optimization of active service capacity, load balancing between clusters of servers, and task scheduling at each cluster, under conditions of data locality which imply different service rates for different cluster locations.Building on previous work, we formulate a convex optimization problem, and use Lagrange duality to decompose it between the different decision variables. We include regularization terms from proximal methods to obtain continuous control laws for load balancing and scheduling, and optimize the remaining variables through primal-dual gradient dynamics. We prove convergence of the resulting control laws to the desired optimal points, and demonstrate its behavior by simulations.
具有数据局部性的分布式计算系统中资源分配的最近邻优化
我们考虑具有多个服务器实例的计算基础设施的资源分配问题。特别是在不同集群位置服务率不同的数据局部性条件下,主动服务容量的联合优化、服务器集群之间的负载均衡以及每个集群的任务调度。在之前工作的基础上,我们提出了一个凸优化问题,并使用拉格朗日对偶将其分解为不同的决策变量。我们从近端方法中引入正则化项来获得负载平衡和调度的连续控制律,并通过原始-对偶梯度动力学来优化剩余变量。我们证明了所得到的控制律收敛于期望的最优点,并通过仿真证明了其行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信