Predictive modeling based power estimation for embedded multicore systems

S. Sankaran
{"title":"Predictive modeling based power estimation for embedded multicore systems","authors":"S. Sankaran","doi":"10.1145/2903150.2911714","DOIUrl":null,"url":null,"abstract":"The increasing number of cores in embedded devices results in improved performance compared to single-core systems. Further, the unique characteristics of these systems provide numerous opportunities for power management which require models for power estimation. In this work, a statistical approach that models the impact of the individual cores and memory hierarchy on overall power consumed by Chip Multiprocessors is developed using Performance Counters. In particular, we construct a per-core based power model using SPLASH2 benchmarks by leveraging concurrency for multicore systems. Our model is simple and technology independent and as a result executes faster incurring lesser overhead. Evaluation of the model shows a strong correlation between core-level activity and power consumption and that the model predicts power consumption for newer observations with minimal errors. In addition, we discuss a few applications where the model can be utilized towards estimating power consumption.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2911714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The increasing number of cores in embedded devices results in improved performance compared to single-core systems. Further, the unique characteristics of these systems provide numerous opportunities for power management which require models for power estimation. In this work, a statistical approach that models the impact of the individual cores and memory hierarchy on overall power consumed by Chip Multiprocessors is developed using Performance Counters. In particular, we construct a per-core based power model using SPLASH2 benchmarks by leveraging concurrency for multicore systems. Our model is simple and technology independent and as a result executes faster incurring lesser overhead. Evaluation of the model shows a strong correlation between core-level activity and power consumption and that the model predicts power consumption for newer observations with minimal errors. In addition, we discuss a few applications where the model can be utilized towards estimating power consumption.
基于预测建模的嵌入式多核系统功率估计
与单核系统相比,嵌入式设备中内核数量的增加提高了性能。此外,这些系统的独特特性为需要功率估计模型的电源管理提供了许多机会。在这项工作中,使用性能计数器开发了一种统计方法,该方法模拟了单个内核和内存层次对芯片多处理器消耗的总体功耗的影响。特别是,我们通过利用多核系统的并发性,使用SPLASH2基准构建了一个基于每核的功率模型。我们的模型简单且与技术无关,因此执行速度更快,开销更小。对该模型的评估表明,核心级活动与功耗之间存在很强的相关性,并且该模型以最小的误差预测较新的观测值的功耗。此外,我们还讨论了一些应用,其中该模型可以用于估计功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信