{"title":"A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression","authors":"Rémi Chan–Renous-Legoubin , Clément W. Royer","doi":"10.1016/j.ejco.2022.100044","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear conjugate gradients are among the most popular techniques for solving continuous optimization problems. Although these schemes have long been studied from a global convergence standpoint, their worst-case complexity properties have yet to be fully understood, especially in the nonconvex setting. In particular, it is unclear whether nonlinear conjugate gradient methods possess better guarantees than first-order methods such as gradient descent. Meanwhile, recent experiments have shown impressive performance of standard nonlinear conjugate gradient techniques on certain nonconvex problems, even when compared with methods endowed with the best known complexity guarantees.</p><p>In this paper, we propose a nonlinear conjugate gradient scheme based on a simple line-search paradigm and a modified restart condition. These two ingredients allow for monitoring the properties of the search directions, which is instrumental in obtaining complexity guarantees. Our complexity results illustrate the possible discrepancy between nonlinear conjugate gradient methods and classical gradient descent. A numerical investigation on nonconvex robust regression problems as well as a standard benchmark illustrate that the restarting condition can track the behavior of a standard implementation.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100044"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062200020X/pdfft?md5=32a8c7d35ac8b53e431514d2573efa79&pid=1-s2.0-S219244062200020X-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219244062200020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 7
Abstract
Nonlinear conjugate gradients are among the most popular techniques for solving continuous optimization problems. Although these schemes have long been studied from a global convergence standpoint, their worst-case complexity properties have yet to be fully understood, especially in the nonconvex setting. In particular, it is unclear whether nonlinear conjugate gradient methods possess better guarantees than first-order methods such as gradient descent. Meanwhile, recent experiments have shown impressive performance of standard nonlinear conjugate gradient techniques on certain nonconvex problems, even when compared with methods endowed with the best known complexity guarantees.
In this paper, we propose a nonlinear conjugate gradient scheme based on a simple line-search paradigm and a modified restart condition. These two ingredients allow for monitoring the properties of the search directions, which is instrumental in obtaining complexity guarantees. Our complexity results illustrate the possible discrepancy between nonlinear conjugate gradient methods and classical gradient descent. A numerical investigation on nonconvex robust regression problems as well as a standard benchmark illustrate that the restarting condition can track the behavior of a standard implementation.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.