Improvement of the COTA-Orthography system through language modeling

Fatma Zahra Besdouri, A. Mekki, Inès Zribi, M. Ellouze
{"title":"Improvement of the COTA-Orthography system through language modeling","authors":"Fatma Zahra Besdouri, A. Mekki, Inès Zribi, M. Ellouze","doi":"10.1109/AICCSA53542.2021.9686898","DOIUrl":null,"url":null,"abstract":"The lack of a single standard orthography causes multiple forms of writing. This orthographic inconsistency is a frequent issue for Natural Language Processing (NLP). In this paper, we present a contextual method based on the orthography convention CODA-TUN [34] to improve the semi-automatic normalization tool, COTA Orthography [7], [25]. Our method targets words having multiple possible corrections which are semi-treated by this system. Therefore, we trained and improved a trigram language model based on a large corpus. We introduced, also, a generative algorithm to retrieve candidates for sentence having the target words. The selection of the correct correction is based on the trigram model. The evaluation results show that the selection accuracy reaches 79.38%.","PeriodicalId":423896,"journal":{"name":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA53542.2021.9686898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of a single standard orthography causes multiple forms of writing. This orthographic inconsistency is a frequent issue for Natural Language Processing (NLP). In this paper, we present a contextual method based on the orthography convention CODA-TUN [34] to improve the semi-automatic normalization tool, COTA Orthography [7], [25]. Our method targets words having multiple possible corrections which are semi-treated by this system. Therefore, we trained and improved a trigram language model based on a large corpus. We introduced, also, a generative algorithm to retrieve candidates for sentence having the target words. The selection of the correct correction is based on the trigram model. The evaluation results show that the selection accuracy reaches 79.38%.
通过语言建模改进COTA-Orthography系统
缺乏统一的标准正字法导致了多种形式的书写。这种拼写不一致是自然语言处理(NLP)中经常出现的问题。在本文中,我们提出了一种基于正字法惯例CODA-TUN[34]的上下文方法来改进半自动规范化工具COTA orthography[7],[25]。我们的方法针对具有多种可能的更正的单词,这些单词被该系统半处理。因此,我们训练并改进了一个基于大型语料库的三元组语言模型。我们还介绍了一种生成算法来检索具有目标词的句子的候选词。正确校正的选择是基于三角模型的。评价结果表明,该方法的选择准确率达到79.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信