Algorithmic mapping of neural network models onto parallel SIMD machines

Wei-Ming Lin, V. Prasanna, K. Przytula
{"title":"Algorithmic mapping of neural network models onto parallel SIMD machines","authors":"Wei-Ming Lin, V. Prasanna, K. Przytula","doi":"10.1109/ASAP.1990.145463","DOIUrl":null,"url":null,"abstract":"The authors consider parallel implementation of neural network computations of fine grain SIMD machines. The authors show a mapping of a neural network having n nodes and e connections onto a parallel machine having (n+e) PEs arranged in an array of square root n+e* square root n+e PEs such that routing for each update iteration of the recall phase can be performed in 24( square root n+e-1) elemental data shifts. The array uses simple PEs and few local registers to perform the routing and computations. The method is simple and is well suited for implementation of various classes of neural networks on many currently available parallel machines.<<ETX>>","PeriodicalId":438078,"journal":{"name":"[1990] Proceedings of the International Conference on Application Specific Array Processors","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1990.145463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

The authors consider parallel implementation of neural network computations of fine grain SIMD machines. The authors show a mapping of a neural network having n nodes and e connections onto a parallel machine having (n+e) PEs arranged in an array of square root n+e* square root n+e PEs such that routing for each update iteration of the recall phase can be performed in 24( square root n+e-1) elemental data shifts. The array uses simple PEs and few local registers to perform the routing and computations. The method is simple and is well suited for implementation of various classes of neural networks on many currently available parallel machines.<>
神经网络模型在并行SIMD机器上的算法映射
作者考虑了细粒度SIMD机器神经网络计算的并行实现。作者展示了一个具有n个节点和e个连接的神经网络映射到具有(n+e)个pe的并行机器上,这些pe以平方根n+e*平方根n+e个pe的数组排列,使得每个召回阶段的更新迭代路由可以在24(平方根n+e-1)个元素数据移位中执行。该数组使用简单的pe和少量本地寄存器来执行路由和计算。该方法简单,非常适合在许多现有的并行机器上实现各种类型的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信