Real-Time Breathing Phase Detection Using Earbuds Microphone

Zihan Wang, Tousif Ahmed, Md. Mahbubur Rahman, M. Y. Ahmed, Ebrahim Nemati, Jilong Kuang, A. Gao
{"title":"Real-Time Breathing Phase Detection Using Earbuds Microphone","authors":"Zihan Wang, Tousif Ahmed, Md. Mahbubur Rahman, M. Y. Ahmed, Ebrahim Nemati, Jilong Kuang, A. Gao","doi":"10.1109/BSN56160.2022.9928520","DOIUrl":null,"url":null,"abstract":"Tracking breathing phases (inhale and exhale) outside the hospitals can offer significant health and wellness benefits. For example, the breathing phases can provide fine-grained breathing information for breathing exercises. While previous works use smartphones and smartwatches for tracking breathing phases, in this work, we use earbuds for breathing phase detection, which can be a better form factor for breathing exercises as it requires less user attention from the user. We propose a convolutional neural network-based algorithm for detecting breathing phases using the audio captured through the earbuds during guided breathing sessions. We conducted a user study with 30 participants in both lab and home environments to develop and evaluate our algorithm. Our algorithm can detect the breathing phases with 85% accuracy by taking only a 500ms audio signal. Our work demonstrates the potential of using earbuds for tracking the breathing phases in real-time.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Tracking breathing phases (inhale and exhale) outside the hospitals can offer significant health and wellness benefits. For example, the breathing phases can provide fine-grained breathing information for breathing exercises. While previous works use smartphones and smartwatches for tracking breathing phases, in this work, we use earbuds for breathing phase detection, which can be a better form factor for breathing exercises as it requires less user attention from the user. We propose a convolutional neural network-based algorithm for detecting breathing phases using the audio captured through the earbuds during guided breathing sessions. We conducted a user study with 30 participants in both lab and home environments to develop and evaluate our algorithm. Our algorithm can detect the breathing phases with 85% accuracy by taking only a 500ms audio signal. Our work demonstrates the potential of using earbuds for tracking the breathing phases in real-time.
实时呼吸相位检测使用耳塞麦克风
在医院外跟踪呼吸阶段(吸气和呼气)可以提供重要的健康和保健益处。例如,呼吸阶段可以为呼吸练习提供细粒度的呼吸信息。虽然以前的工作使用智能手机和智能手表来跟踪呼吸阶段,但在这项工作中,我们使用耳塞进行呼吸阶段检测,这对于呼吸练习来说是一个更好的形式因素,因为它需要用户较少的注意力。我们提出了一种基于卷积神经网络的算法,用于在引导呼吸过程中使用耳塞捕获的音频来检测呼吸阶段。我们在实验室和家庭环境中对30名参与者进行了用户研究,以开发和评估我们的算法。该算法仅采集500ms音频信号,检测呼吸相位的准确率为85%。我们的工作证明了使用耳塞实时跟踪呼吸阶段的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信