Zihan Wang, Tousif Ahmed, Md. Mahbubur Rahman, M. Y. Ahmed, Ebrahim Nemati, Jilong Kuang, A. Gao
{"title":"Real-Time Breathing Phase Detection Using Earbuds Microphone","authors":"Zihan Wang, Tousif Ahmed, Md. Mahbubur Rahman, M. Y. Ahmed, Ebrahim Nemati, Jilong Kuang, A. Gao","doi":"10.1109/BSN56160.2022.9928520","DOIUrl":null,"url":null,"abstract":"Tracking breathing phases (inhale and exhale) outside the hospitals can offer significant health and wellness benefits. For example, the breathing phases can provide fine-grained breathing information for breathing exercises. While previous works use smartphones and smartwatches for tracking breathing phases, in this work, we use earbuds for breathing phase detection, which can be a better form factor for breathing exercises as it requires less user attention from the user. We propose a convolutional neural network-based algorithm for detecting breathing phases using the audio captured through the earbuds during guided breathing sessions. We conducted a user study with 30 participants in both lab and home environments to develop and evaluate our algorithm. Our algorithm can detect the breathing phases with 85% accuracy by taking only a 500ms audio signal. Our work demonstrates the potential of using earbuds for tracking the breathing phases in real-time.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Tracking breathing phases (inhale and exhale) outside the hospitals can offer significant health and wellness benefits. For example, the breathing phases can provide fine-grained breathing information for breathing exercises. While previous works use smartphones and smartwatches for tracking breathing phases, in this work, we use earbuds for breathing phase detection, which can be a better form factor for breathing exercises as it requires less user attention from the user. We propose a convolutional neural network-based algorithm for detecting breathing phases using the audio captured through the earbuds during guided breathing sessions. We conducted a user study with 30 participants in both lab and home environments to develop and evaluate our algorithm. Our algorithm can detect the breathing phases with 85% accuracy by taking only a 500ms audio signal. Our work demonstrates the potential of using earbuds for tracking the breathing phases in real-time.