Parallel algorithms for spatial data partition and join processing

Yanchun Zhang, Jitian Xiao, A. Roberts
{"title":"Parallel algorithms for spatial data partition and join processing","authors":"Yanchun Zhang, Jitian Xiao, A. Roberts","doi":"10.1109/ICAPP.1997.651536","DOIUrl":null,"url":null,"abstract":"The spatial join operations combine two sets of spatial data by their spatial relationships. They are among the most important, yet most time-consuming operations in spatial databases. We consider the problem of binary polygon intersection joins based on the filter-and-refine strategy. Our objective is to minimize the I/O cost and the response time for the refinement step. First, a graph model is proposed to formalize the refinement cost and matrix-based sequential data partition algorithms are introduced. Then a parallel data partitioning algorithm is developed with a detailed complexity analysis. Based on the data partition results, a distribution algorithm is also proposed for scheduling parallel spatial join processing.","PeriodicalId":325978,"journal":{"name":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1997.651536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The spatial join operations combine two sets of spatial data by their spatial relationships. They are among the most important, yet most time-consuming operations in spatial databases. We consider the problem of binary polygon intersection joins based on the filter-and-refine strategy. Our objective is to minimize the I/O cost and the response time for the refinement step. First, a graph model is proposed to formalize the refinement cost and matrix-based sequential data partition algorithms are introduced. Then a parallel data partitioning algorithm is developed with a detailed complexity analysis. Based on the data partition results, a distribution algorithm is also proposed for scheduling parallel spatial join processing.
空间数据分区和连接处理的并行算法
空间连接操作通过空间关系组合两组空间数据。它们是空间数据库中最重要但也最耗时的操作之一。我们考虑了基于滤波-细化策略的二叉多边形相交连接问题。我们的目标是最小化I/O成本和优化步骤的响应时间。首先,提出了一种图模型来形式化改进成本,并引入了基于矩阵的顺序数据划分算法。在此基础上,提出了一种并行数据划分算法,并对算法的复杂度进行了详细的分析。在数据分区结果的基础上,提出了一种调度并行空间连接处理的分布算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信