Make Skeleton-based Action Recognition Model Smaller, Faster and Better

Fan Yang, S. Sakti, Yang Wu, Satoshi Nakamura
{"title":"Make Skeleton-based Action Recognition Model Smaller, Faster and Better","authors":"Fan Yang, S. Sakti, Yang Wu, Satoshi Nakamura","doi":"10.1145/3338533.3366569","DOIUrl":null,"url":null,"abstract":"Although skeleton-based action recognition has achieved great success in recent years, most of the existing methods may suffer from a large model size and slow execution speed. To alleviate this issue, we analyze skeleton sequence properties to propose a Double-feature Double-motion Network (DD-Net) for skeleton-based action recognition. By using a lightweight network structure (i.e., 0.15 million parameters), DD-Net can reach a super fast speed, as 3,500 FPS on an ordinary GPU (e.g., GTX 1080Ti), or, 2,000 FPS on an ordinary CPU (e.g., Intel E5-2620). By employing robust features, DD-Net achieves state-of-the-art performance on our experiment datasets: SHREC (i.e., hand actions) and JHMDB (i.e., body actions). Our code is on https://github.com/fandulu/DD-Net.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

Although skeleton-based action recognition has achieved great success in recent years, most of the existing methods may suffer from a large model size and slow execution speed. To alleviate this issue, we analyze skeleton sequence properties to propose a Double-feature Double-motion Network (DD-Net) for skeleton-based action recognition. By using a lightweight network structure (i.e., 0.15 million parameters), DD-Net can reach a super fast speed, as 3,500 FPS on an ordinary GPU (e.g., GTX 1080Ti), or, 2,000 FPS on an ordinary CPU (e.g., Intel E5-2620). By employing robust features, DD-Net achieves state-of-the-art performance on our experiment datasets: SHREC (i.e., hand actions) and JHMDB (i.e., body actions). Our code is on https://github.com/fandulu/DD-Net.
使基于骨骼的动作识别模型更小、更快、更好
尽管基于骨架的动作识别近年来取得了很大的成功,但现有的大多数方法都存在模型尺寸大、执行速度慢的问题。为了解决这个问题,我们分析了骨架序列的特性,提出了一种基于骨架动作识别的双特征双运动网络(DD-Net)。通过使用轻量级的网络结构(即15万个参数),DD-Net可以达到超快的速度,在普通GPU(如GTX 1080Ti)上可以达到3500 FPS,在普通CPU(如Intel E5-2620)上可以达到2000 FPS。通过采用鲁棒性特征,DD-Net在我们的实验数据集上实现了最先进的性能:SHREC(即手部动作)和JHMDB(即身体动作)。我们的代码在https://github.com/fandulu/DD-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信