A general formula for the stabilization of event-based controlled systems

N. Marchand, S. Durand, J. Guerrero-Castellanos
{"title":"A general formula for the stabilization of event-based controlled systems","authors":"N. Marchand, S. Durand, J. Guerrero-Castellanos","doi":"10.1109/CDC.2011.6160368","DOIUrl":null,"url":null,"abstract":"In this paper, a universal formula is proposed for event-based stabilization of general nonlinear systems affine in the control. The feedback is derived from the original one proposed by Sontag. Under the assumption of the existence of a smooth Control Lyapunov Function, it enables smooth (except at the origin) global asymptotic stabilization of the origin while ensuring that the sampling interval do not contract to zero. Indeed, for any initial condition within any given closed set the minimal sampling interval is proved to be strictly positive. Under homogeneity assumptions the control can be proved to be smooth anywhere and the sampling intervals bounded below for any initial condition.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, a universal formula is proposed for event-based stabilization of general nonlinear systems affine in the control. The feedback is derived from the original one proposed by Sontag. Under the assumption of the existence of a smooth Control Lyapunov Function, it enables smooth (except at the origin) global asymptotic stabilization of the origin while ensuring that the sampling interval do not contract to zero. Indeed, for any initial condition within any given closed set the minimal sampling interval is proved to be strictly positive. Under homogeneity assumptions the control can be proved to be smooth anywhere and the sampling intervals bounded below for any initial condition.
基于事件的受控系统镇定的一般公式
本文给出了一般非线性系统仿射控制的基于事件镇定的一个通用公式。该反馈源自Sontag提出的原始反馈。在光滑控制Lyapunov函数存在的假设下,在保证采样区间不收缩到零的同时,使原点的全局渐近镇定(除了在原点)变得光滑。事实上,对于任何给定闭集中的任何初始条件,最小抽样区间都证明是严格正的。在齐性假设下,可以证明控制在任何初始条件下都是光滑的,并且采样区间有界于下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信