Efficient Component-Based Vibration and Power Flow Analysis of a Vehicle Structure

Yung-Chang Tan, Soo-Yeol Lee, M. Castanier, C. Pierre
{"title":"Efficient Component-Based Vibration and Power Flow Analysis of a Vehicle Structure","authors":"Yung-Chang Tan, Soo-Yeol Lee, M. Castanier, C. Pierre","doi":"10.1115/imece2001/nca-23509","DOIUrl":null,"url":null,"abstract":"\n A case study on the efficient prediction of vibration and power flow in a vehicle structure is presented. The modeling and analysis technique is based on component mode synthesis (CMS). First, the finite element model (FEM) of the entire vehicle structure is partitioned into component models. Then, the Craig-Bampton method is used to assemble a CMS model of the vehicle. The CMS matrices are further reduced by finding characteristic constraint (CC) modes. A relatively small number of CC modes are selected to capture the primary motion of the interface between components, yielding a highly reduced order model of the vehicle vibration in the low- to mid-frequency range. Using this reduced order model (ROM), the power flow and vibration response of the vehicle is analyzed for several design configurations. A design change in one component structure requires a re-analysis of the FEM for that component only, in order to generate a new ROM of the entire vehicle. It is found that this component-based approach allows efficient evaluation of the effectiveness of the vehicle design changes.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A case study on the efficient prediction of vibration and power flow in a vehicle structure is presented. The modeling and analysis technique is based on component mode synthesis (CMS). First, the finite element model (FEM) of the entire vehicle structure is partitioned into component models. Then, the Craig-Bampton method is used to assemble a CMS model of the vehicle. The CMS matrices are further reduced by finding characteristic constraint (CC) modes. A relatively small number of CC modes are selected to capture the primary motion of the interface between components, yielding a highly reduced order model of the vehicle vibration in the low- to mid-frequency range. Using this reduced order model (ROM), the power flow and vibration response of the vehicle is analyzed for several design configurations. A design change in one component structure requires a re-analysis of the FEM for that component only, in order to generate a new ROM of the entire vehicle. It is found that this component-based approach allows efficient evaluation of the effectiveness of the vehicle design changes.
基于高效构件的汽车结构振动与功率流分析
给出了汽车结构振动和功率流有效预测的实例研究。建模和分析技术基于组件模式综合(CMS)。首先,将整车结构有限元模型划分为部件模型;然后,使用Craig-Bampton方法组装了车辆的CMS模型。通过寻找特征约束(CC)模式进一步简化了CMS矩阵。选择相对较少数量的CC模式来捕捉部件之间界面的主要运动,从而产生低至中频范围内车辆振动的高度降阶模型。利用该降阶模型,分析了不同设计构型下车辆的功率流和振动响应。一个部件结构的设计变更需要对该部件的FEM进行重新分析,以便生成整个车辆的新ROM。研究发现,这种基于构件的方法可以有效地评估车辆设计变更的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信