Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation

Jasper Kyle Catapang
{"title":"Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation","authors":"Jasper Kyle Catapang","doi":"10.1109/ISCMI56532.2022.10068476","DOIUrl":null,"url":null,"abstract":"Stochastic gradient descent (SGD) is a widely used optimization algorithm for training machine learning models. However, due to its slow convergence and high variance, SGD can be difficult to use in practice. In this paper, the author proposes the use of the 4th order Runge-Kutta-Nyström (RKN) method to approximate the gradient function in SGD and replace the Newton boosting and SGD found in XGBoost and multilayer perceptrons (MLPs), respectively. The new variants are called ASTRA-Boost and ASTRA perceptron, where ASTRA stands for “Accuracy-Speed Trade-off Reduction via Approximation”. Specifically, the ASTRA models, through the 4th order Runge-Kutta-Nyström, converge faster than MLP with SGD and they also produce lower variance outputs, all without compromising model accuracy and overall performance.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stochastic gradient descent (SGD) is a widely used optimization algorithm for training machine learning models. However, due to its slow convergence and high variance, SGD can be difficult to use in practice. In this paper, the author proposes the use of the 4th order Runge-Kutta-Nyström (RKN) method to approximate the gradient function in SGD and replace the Newton boosting and SGD found in XGBoost and multilayer perceptrons (MLPs), respectively. The new variants are called ASTRA-Boost and ASTRA perceptron, where ASTRA stands for “Accuracy-Speed Trade-off Reduction via Approximation”. Specifically, the ASTRA models, through the 4th order Runge-Kutta-Nyström, converge faster than MLP with SGD and they also produce lower variance outputs, all without compromising model accuracy and overall performance.
基于随机梯度下降逼近的机器学习模型速度与精度权衡优化
随机梯度下降(SGD)是一种广泛应用于机器学习模型训练的优化算法。然而,由于其收敛缓慢和高方差,SGD在实践中很难使用。在本文中,作者提出使用四阶Runge-Kutta-Nyström (RKN)方法来近似SGD中的梯度函数,并分别取代XGBoost和多层感知器(mlp)中的牛顿增强和SGD。新的变体被称为ASTRA- boost和ASTRA感知器,其中ASTRA代表“通过近似降低精度-速度权衡”。具体来说,ASTRA模型通过4阶Runge-Kutta-Nyström比具有SGD的MLP收敛得更快,并且它们还产生更低的方差输出,所有这些都不会影响模型的准确性和整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信