JIS: Pest Population Prognosis with Escalator Boxcar Train

K. Yeow, Matthias Becker
{"title":"JIS: Pest Population Prognosis with Escalator Boxcar Train","authors":"K. Yeow, Matthias Becker","doi":"10.1109/IEEM.2018.8607724","DOIUrl":null,"url":null,"abstract":"Pest population prognosis helps the growers in the greenhouse to keep the pest population below the threshold efficiently. INSIM is one of the recognized pest population simulators. However, the implementation of the INSIM simulation faces some difficulties to be executed as a web service. Thus, we propose a Java-based web application using the mathematical model used in INSIM. Additionally to the known model, our implementation is able to give prognosis boundaries based on uncertainty of the temperature development and pest count. The proposed JIS gives lower and upper estimation of the pest population with the mean accuracy of 66.67% against our experimental validation data. Furthermore, the relationship between the area coverage for each yellow sticky trap and its accuracy percentage is investigated.","PeriodicalId":119238,"journal":{"name":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2018.8607724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pest population prognosis helps the growers in the greenhouse to keep the pest population below the threshold efficiently. INSIM is one of the recognized pest population simulators. However, the implementation of the INSIM simulation faces some difficulties to be executed as a web service. Thus, we propose a Java-based web application using the mathematical model used in INSIM. Additionally to the known model, our implementation is able to give prognosis boundaries based on uncertainty of the temperature development and pest count. The proposed JIS gives lower and upper estimation of the pest population with the mean accuracy of 66.67% against our experimental validation data. Furthermore, the relationship between the area coverage for each yellow sticky trap and its accuracy percentage is investigated.
JIS:自动扶梯车厢列车的害虫种群预测
害虫种群预测有助于温室内栽培者有效地将害虫种群控制在阈值以下。INSIM是公认的害虫种群模拟器之一。然而,INSIM模拟的实现在作为web服务执行时面临一些困难。因此,我们提出了一个基于java的web应用程序,使用INSIM中使用的数学模型。除了已知的模型外,我们的实现还能够基于温度发展和害虫数量的不确定性给出预测边界。根据实验验证数据,所提出的JIS给出了害虫种群的上下估计值,平均准确率为66.67%。此外,还研究了每个黄色粘捕器的面积覆盖率与其准确率之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信