{"title":"A Taxi Driving Fraud Detection System","authors":"Yong Ge, Hui Xiong, Chuanren Liu, Zhi-Hua Zhou","doi":"10.1109/ICDM.2011.18","DOIUrl":null,"url":null,"abstract":"Advances in GPS tracking technology have enabled us to install GPS tracking devices in city taxis to collect a large amount of GPS traces under operational time constraints. These GPS traces provide unparallel opportunities for us to uncover taxi driving fraud activities. In this paper, we develop a taxi driving fraud detection system, which is able to systematically investigate taxi driving fraud. In this system, we first provide functions to find two aspects of evidences: travel route evidence and driving distance evidence. Furthermore, a third function is designed to combine the two aspects of evidences based on Dempster-Shafer theory. To implement the system, we first identify interesting sites from a large amount of taxi GPS logs. Then, we propose a parameter-free method to mine the travel route evidences. Also, we introduce route mark to represent a typical driving path from an interesting site to another one. Based on route mark, we exploit a generative statistical model to characterize the distribution of driving distance and identify the driving distance evidences. Finally, we evaluate the taxi driving fraud detection system with large scale real-world taxi GPS logs. In the experiments, we uncover some regularity of driving fraud activities and investigate the motivation of drivers to commit a driving fraud by analyzing the produced taxi fraud data.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"172","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172
Abstract
Advances in GPS tracking technology have enabled us to install GPS tracking devices in city taxis to collect a large amount of GPS traces under operational time constraints. These GPS traces provide unparallel opportunities for us to uncover taxi driving fraud activities. In this paper, we develop a taxi driving fraud detection system, which is able to systematically investigate taxi driving fraud. In this system, we first provide functions to find two aspects of evidences: travel route evidence and driving distance evidence. Furthermore, a third function is designed to combine the two aspects of evidences based on Dempster-Shafer theory. To implement the system, we first identify interesting sites from a large amount of taxi GPS logs. Then, we propose a parameter-free method to mine the travel route evidences. Also, we introduce route mark to represent a typical driving path from an interesting site to another one. Based on route mark, we exploit a generative statistical model to characterize the distribution of driving distance and identify the driving distance evidences. Finally, we evaluate the taxi driving fraud detection system with large scale real-world taxi GPS logs. In the experiments, we uncover some regularity of driving fraud activities and investigate the motivation of drivers to commit a driving fraud by analyzing the produced taxi fraud data.