Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter

Ayan Kumar Bhowmick
{"title":"Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter","authors":"Ayan Kumar Bhowmick","doi":"10.1145/3336191.3372181","DOIUrl":null,"url":null,"abstract":"Twitter is currently a popular microblogging platform for spread of information by users in the form of tweet messages. Such tweets are shared with followers of the seed user who may reshare it with their own set of followers. Long chain of such retweets form cascades. For effective diffusion of information through such Twitter cascades, we identify two different objectives based on using temporal sequence of retweets. Firstly, we aim to infer the structure of influence trees of Twitter cascades, denoting the who-influenced-whom relationship among retweeting users in the cascade, that can play a significant role in identifying critical paths in the network for information dissemination. The constructed trees closely resemble ground truth influence trees of empirical cascades with high retweet count. Secondly, we propose a fast and efficient algorithm for detection of influential users by identifying anchor nodes from temporal retweet sequence. Identification of such a diverse set of influential users enable a faster diffusion of tweets to a large and diverse population, when targeted as seeds thereby maximizing the influence spread, facilitating several applications including viral marketing, disease control and news dissemination.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3372181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Twitter is currently a popular microblogging platform for spread of information by users in the form of tweet messages. Such tweets are shared with followers of the seed user who may reshare it with their own set of followers. Long chain of such retweets form cascades. For effective diffusion of information through such Twitter cascades, we identify two different objectives based on using temporal sequence of retweets. Firstly, we aim to infer the structure of influence trees of Twitter cascades, denoting the who-influenced-whom relationship among retweeting users in the cascade, that can play a significant role in identifying critical paths in the network for information dissemination. The constructed trees closely resemble ground truth influence trees of empirical cascades with high retweet count. Secondly, we propose a fast and efficient algorithm for detection of influential users by identifying anchor nodes from temporal retweet sequence. Identification of such a diverse set of influential users enable a faster diffusion of tweets to a large and diverse population, when targeted as seeds thereby maximizing the influence spread, facilitating several applications including viral marketing, disease control and news dissemination.
推文的时间模式有助于推特信息传播的最大化
Twitter是目前流行的微博平台,用户可以通过tweet消息的形式传播信息。这些推文与种子用户的追随者分享,这些追随者可能会与他们自己的追随者分享。这种转发的长链形成了级联。为了通过这样的Twitter级联有效地传播信息,我们根据转发的时间序列确定了两个不同的目标。首先,我们旨在推断Twitter级联的影响树结构,表示级联中转发用户之间的谁-受影响-谁关系,这对于识别网络中信息传播的关键路径具有重要作用。所构建的树与高转发数的经验级联的基础真值影响树非常相似。其次,我们提出了一种快速有效的算法,通过从时间转发序列中识别锚节点来检测有影响力的用户。识别这样一组不同的有影响力的用户,可以使推文更快地传播到大量不同的人群,当目标作为种子时,从而最大限度地扩大影响力传播,促进包括病毒营销、疾病控制和新闻传播在内的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信