Towards a parameter tuning approach for a map-matching algorithm

Carola A. Blazquez, Jana Ries, P. Miranda
{"title":"Towards a parameter tuning approach for a map-matching algorithm","authors":"Carola A. Blazquez, Jana Ries, P. Miranda","doi":"10.1109/ICVES.2017.7991906","DOIUrl":null,"url":null,"abstract":"Map Matching Algorithms (MMA) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. There is a lack of systematic parameter tuning approaches for optimizing the MMA performance. Thus, a novel integrated framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines the best algorithm parameter values by using instance-specific information a priori to the execution of the MMA. A preliminary prototype of an IPTS system is designed based on real-world data, which identifies the explanatory variables that condition the MMA performance. The implementation of the fuzzy IPTS tool on real-word data yields an enhanced MMA performance in the solution quality and computational time compared to the results of the execution of the MMA with constant algorithm settings.","PeriodicalId":303389,"journal":{"name":"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2017.7991906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Map Matching Algorithms (MMA) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. There is a lack of systematic parameter tuning approaches for optimizing the MMA performance. Thus, a novel integrated framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines the best algorithm parameter values by using instance-specific information a priori to the execution of the MMA. A preliminary prototype of an IPTS system is designed based on real-world data, which identifies the explanatory variables that condition the MMA performance. The implementation of the fuzzy IPTS tool on real-word data yields an enhanced MMA performance in the solution quality and computational time compared to the results of the execution of the MMA with constant algorithm settings.
一种映射匹配算法的参数调整方法
地图匹配算法(MMA)是为了解决在将GPS测量值分配到数字道路网络过程中出现的空间模糊性而开发的。目前还缺乏优化MMA性能的系统参数调优方法。因此,提出了一种新的集成框架,用于系统校准后处理MMA的参数。校准方法由实例特定参数调优策略(IPTS)组成,该策略采用模糊逻辑原理。提出的模糊IPTS工具通过使用实例特定信息先验地确定最佳算法参数值。基于实际数据设计了IPTS系统的初步原型,确定了影响MMA性能的解释变量。与使用固定算法设置执行MMA的结果相比,在实时数据上实现模糊IPTS工具在解决方案质量和计算时间方面产生了增强的MMA性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信