Extraction of Lexical Bundles used in Natural Language Processing Articles

Chooi-Ling Goh, Y. Lepage
{"title":"Extraction of Lexical Bundles used in Natural Language Processing Articles","authors":"Chooi-Ling Goh, Y. Lepage","doi":"10.1109/ICACSIS47736.2019.8979950","DOIUrl":null,"url":null,"abstract":"Lexical bundles are indispensable for fluent academic writing. They might not constitute complete structural units but they occur very frequently in academic conversations, conference presentations and scientific articles. This paper shows how to collect a large database of lexical bundles from articles in the Natural Language Processing (NLP) domain. We first collect highly frequent N-grams from the ACL-ARC collection of NLP articles and then classify them into true or false lexical bundles using machine learning models trained from a set of manually checked bundles. In a verification experiment, our best model achieves an accuracy of 76 %. Using this model, we extract more than 18,000 lexical bundles from the ACL-ARC corpus, which we publicly release.","PeriodicalId":165090,"journal":{"name":"2019 International Conference on Advanced Computer Science and information Systems (ICACSIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Computer Science and information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS47736.2019.8979950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Lexical bundles are indispensable for fluent academic writing. They might not constitute complete structural units but they occur very frequently in academic conversations, conference presentations and scientific articles. This paper shows how to collect a large database of lexical bundles from articles in the Natural Language Processing (NLP) domain. We first collect highly frequent N-grams from the ACL-ARC collection of NLP articles and then classify them into true or false lexical bundles using machine learning models trained from a set of manually checked bundles. In a verification experiment, our best model achieves an accuracy of 76 %. Using this model, we extract more than 18,000 lexical bundles from the ACL-ARC corpus, which we publicly release.
自然语言处理文章中词汇束的提取
词汇束对于流畅的学术写作是不可或缺的。它们可能不构成完整的结构单元,但它们经常出现在学术对话、会议报告和科学文章中。本文介绍了如何从自然语言处理(NLP)领域的文章中收集一个大型词汇束数据库。我们首先从NLP文章的ACL-ARC集合中收集高度频繁的n -gram,然后使用从一组手动检查的束中训练的机器学习模型将它们分类为真或假词汇束。在验证实验中,我们的最佳模型达到了76%的准确率。使用这个模型,我们从公开发布的ACL-ARC语料库中提取了超过18,000个词汇包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信