Learning partial-value variable relations for system modeling

Nong Ye, T. Fok, Xin Wang, J. Collofello, Nancy Dickson
{"title":"Learning partial-value variable relations for system modeling","authors":"Nong Ye, T. Fok, Xin Wang, J. Collofello, Nancy Dickson","doi":"10.1109/ICCAR.2018.8384702","DOIUrl":null,"url":null,"abstract":"An important part of system modeling involves establishing relations of system variables. Data collected from a system reflects relations of system variables and thus allows us to learn variable relations from system data. Existing machine learning and data mining techniques focus on learning variable relations that hold for all values of variables. However, different variable relations may exist for different ranges of variable values, or a variable relation holds only for certain ranges of variable values but not for full ranges of variable values. This paper presents the use of a new algorithm, called Partial-Value Association Discovery (PVAD), to learn partial-value variable relations for energy consumption system modeling and engineering retention.","PeriodicalId":106624,"journal":{"name":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2018.8384702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An important part of system modeling involves establishing relations of system variables. Data collected from a system reflects relations of system variables and thus allows us to learn variable relations from system data. Existing machine learning and data mining techniques focus on learning variable relations that hold for all values of variables. However, different variable relations may exist for different ranges of variable values, or a variable relation holds only for certain ranges of variable values but not for full ranges of variable values. This paper presents the use of a new algorithm, called Partial-Value Association Discovery (PVAD), to learn partial-value variable relations for energy consumption system modeling and engineering retention.
学习用于系统建模的部分值变量关系
系统建模的一个重要部分是建立系统变量之间的关系。从系统中收集的数据反映了系统变量之间的关系,从而使我们能够从系统数据中了解变量之间的关系。现有的机器学习和数据挖掘技术侧重于学习适用于所有变量值的变量关系。然而,不同的变量值范围可能存在不同的变量关系,或者变量关系仅适用于某些范围的变量值,而不适用于整个范围的变量值。本文提出了一种新的算法,称为部分值关联发现(PVAD),用于学习部分值变量关系,用于能源消耗系统建模和工程保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信