F. B. Rajeb, M. A. Rahman, Yan Zhang, S. Imtiaz, A. Aborig, Mohamed Odan
{"title":"PRESSURE LOSS OF WATER–CO2 TWO-PHASE FLOW UNDER DIFFERENT OPERATING CONDITIONS","authors":"F. B. Rajeb, M. A. Rahman, Yan Zhang, S. Imtiaz, A. Aborig, Mohamed Odan","doi":"10.2495/AFM180271","DOIUrl":null,"url":null,"abstract":"In the present study, pipe flows are used to investigate the behavior flow of water–CO2 mixtures at different pressures and temperatures. The flow rate and pressure of water and CO2 are changed by using a pump placed ahead of the mixing point. Pressure and temperature levels are recorded by pressure sensors and thermocouples affixed at points along the pipe loop. The flow regimes of two-phase water– CO2 flow is visualized through transparent tubes using a high-speed camera. After several experiments, it was found that the mean pressure drop along the tube for a water–CO2 system flow is about 4 kPa/m for water flow rates between 0.4 and 0.7 L/S and CO2 flow rates between 2.5 and 11 L/S. The maximum inlet pressure for water is 400 kPa and for CO2 is 3000 kPa. In this experiment, the phase fraction of water is approximately 0.5–0.15 and the phase fraction of CO2 is around 0.85–0.95. The investigated flow regime under these flow conditions is often intermittent.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, pipe flows are used to investigate the behavior flow of water–CO2 mixtures at different pressures and temperatures. The flow rate and pressure of water and CO2 are changed by using a pump placed ahead of the mixing point. Pressure and temperature levels are recorded by pressure sensors and thermocouples affixed at points along the pipe loop. The flow regimes of two-phase water– CO2 flow is visualized through transparent tubes using a high-speed camera. After several experiments, it was found that the mean pressure drop along the tube for a water–CO2 system flow is about 4 kPa/m for water flow rates between 0.4 and 0.7 L/S and CO2 flow rates between 2.5 and 11 L/S. The maximum inlet pressure for water is 400 kPa and for CO2 is 3000 kPa. In this experiment, the phase fraction of water is approximately 0.5–0.15 and the phase fraction of CO2 is around 0.85–0.95. The investigated flow regime under these flow conditions is often intermittent.