A Fronthaul Signal Compression Method Based on Trellis Coded Quantization

Flávio Brito, M. Berg, Chenguang Lu, Leonardo Ramalho, Ilan Sousa, A. Klautau
{"title":"A Fronthaul Signal Compression Method Based on Trellis Coded Quantization","authors":"Flávio Brito, M. Berg, Chenguang Lu, Leonardo Ramalho, Ilan Sousa, A. Klautau","doi":"10.1109/LATINCOM48065.2019.8937963","DOIUrl":null,"url":null,"abstract":"In the C-RAN architecture, there is a very high requirement of data rate for the fronthaul due to the characteristics and the high number of signals. One of the solutions relies on compression techniques to alleviate this requirement. Therefore, in this work, we propose a compression technique based on Trellis Coded Quantization. We use a resampling of 2/3, block scaling, TCQ quantization, and entropy coding. The results show that improves EVM performance in comparison with the scalar quantization and presents a lower computational cost than vector quantization.","PeriodicalId":120312,"journal":{"name":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM48065.2019.8937963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the C-RAN architecture, there is a very high requirement of data rate for the fronthaul due to the characteristics and the high number of signals. One of the solutions relies on compression techniques to alleviate this requirement. Therefore, in this work, we propose a compression technique based on Trellis Coded Quantization. We use a resampling of 2/3, block scaling, TCQ quantization, and entropy coding. The results show that improves EVM performance in comparison with the scalar quantization and presents a lower computational cost than vector quantization.
基于栅格编码量化的前传信号压缩方法
在C-RAN体系结构中,由于其特点和信号数量多,对前传的数据速率有很高的要求。一种解决方案依赖于压缩技术来缓解这种需求。因此,本文提出了一种基于网格编码量化的压缩技术。我们使用2/3的重采样、块缩放、TCQ量化和熵编码。结果表明,与标量量化相比,该方法提高了EVM的性能,并且比矢量量化具有更低的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信