{"title":"Team Performance with Test Scores","authors":"J. Kleinberg, M. Raghu","doi":"10.1145/2764468.2764496","DOIUrl":null,"url":null,"abstract":"Team performance is a ubiquitous area of inquiry in the social sciences, and it motivates the problem of team selection -- choosing the members of a team for maximum performance. Influential work of Hong and Page has argued that testing individuals in isolation and then assembling the highest-scoring ones into a team is not an effective method for team selection. For a broad class of performance measures, based on the expected maximum of random variables representing individual candidates, we show that tests directly measuring individual performance are indeed ineffective, but that a more subtle family of tests used in isolation can provide a constant-factor approximation for team performance. These new tests measure the \"potential\" of individuals, in a precise sense, rather than performance; to our knowledge they represent the first time that individual tests have been shown to produce near-optimal teams for a non-trivial team performance measure. We also show families of subdmodular and supermodular team performance functions for which no test applied to individuals can produce near-optimal teams, and discuss implications for submodular maximization via hill-climbing.","PeriodicalId":376992,"journal":{"name":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764468.2764496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Team performance is a ubiquitous area of inquiry in the social sciences, and it motivates the problem of team selection -- choosing the members of a team for maximum performance. Influential work of Hong and Page has argued that testing individuals in isolation and then assembling the highest-scoring ones into a team is not an effective method for team selection. For a broad class of performance measures, based on the expected maximum of random variables representing individual candidates, we show that tests directly measuring individual performance are indeed ineffective, but that a more subtle family of tests used in isolation can provide a constant-factor approximation for team performance. These new tests measure the "potential" of individuals, in a precise sense, rather than performance; to our knowledge they represent the first time that individual tests have been shown to produce near-optimal teams for a non-trivial team performance measure. We also show families of subdmodular and supermodular team performance functions for which no test applied to individuals can produce near-optimal teams, and discuss implications for submodular maximization via hill-climbing.