Automated text categorization by generalized kernel machines

Jiaqi Tan, Wenye Li, Haoming Li
{"title":"Automated text categorization by generalized kernel machines","authors":"Jiaqi Tan, Wenye Li, Haoming Li","doi":"10.1109/ICINFA.2014.6932685","DOIUrl":null,"url":null,"abstract":"Text categorization refers to the task of designing methods to automatically classify text documents into different groups. With wide applications in intelligent information processing, it has attracted much recent research attention. The classical support vector machines (SVM) algorithm has obtained significant success on this task. Inspired by the achievements of SVM, a family of related kernel methods is being widely studied. This paper investigates a novel kernel method for text categorization. Different from SVM and related approaches which operate on thousands of word term features of text corpus, our method takes concept features into consideration as well. We use a generalized regularizer which leaves concept features unregularized. With a squared-loss function to measure the empirical error, the method has a simple convex solution. In real evaluations we have verified both the effectiveness and the efficiency of the method in benchmarked text categorization applications.","PeriodicalId":427762,"journal":{"name":"2014 IEEE International Conference on Information and Automation (ICIA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2014.6932685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text categorization refers to the task of designing methods to automatically classify text documents into different groups. With wide applications in intelligent information processing, it has attracted much recent research attention. The classical support vector machines (SVM) algorithm has obtained significant success on this task. Inspired by the achievements of SVM, a family of related kernel methods is being widely studied. This paper investigates a novel kernel method for text categorization. Different from SVM and related approaches which operate on thousands of word term features of text corpus, our method takes concept features into consideration as well. We use a generalized regularizer which leaves concept features unregularized. With a squared-loss function to measure the empirical error, the method has a simple convex solution. In real evaluations we have verified both the effectiveness and the efficiency of the method in benchmarked text categorization applications.
基于广义核机器的自动文本分类
文本分类是指设计将文本文档自动分类成不同组的方法。由于其在智能信息处理中的广泛应用,近年来引起了人们的广泛关注。经典的支持向量机(SVM)算法在该任务上取得了显著的成功。受支持向量机研究成果的启发,一系列相关的核方法得到了广泛的研究。本文研究了一种新的文本分类核方法。与支持向量机和相关方法对文本语料库中数千词的术语特征进行操作不同,我们的方法还考虑了概念特征。我们使用广义正则化器,使概念特征不正则化。该方法采用平方损失函数测量经验误差,具有简单的凸解。在实际评估中,我们已经验证了该方法在基准文本分类应用中的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信