Theodoros N. Arvanitis, C. Constantinou, A. Stepanenko, Y. Sun, B. Liu, K. Baughan
{"title":"Network visualisation and analysis tool based on logical network abridgment","authors":"Theodoros N. Arvanitis, C. Constantinou, A. Stepanenko, Y. Sun, B. Liu, K. Baughan","doi":"10.1109/MILCOM.2005.1605672","DOIUrl":null,"url":null,"abstract":"A novel procedure of summarizing and abstracting the topology and distributed statistical measures of routing performance for communication networks is presented. This procedure, called logical network abridgment (LNA), forms the basis of a novel resilient recursive routing (R3) protocol. In this paper, we investigate the usefulness of LNA in visualizing and defining the state of health of a communication network. Traditionally, connectivity and metrics (such as link utilization, end-to-end delay, etc.) are used to provide indications of the state of health of a network. However, connectivity alone tells us little about the intrinsic diversity of the network and therefore its resiliency to attacks or attrition. Similarly, individual localized or path specific metrics tell us little about the overall intrinsic capability of the network. The LNA procedure summarizes the metric of choice over the total network and is thus capable of describing the intrinsic state of its health. In the context of military command and control, as well as commercial network management, scenarios, operators wish to easily create well-designed networks, in terms of resiliency and performance. Furthermore, operators need to identify, in an intuitive manner, the vulnerabilities that exist in a network. In addition, the consequences of actions taken to remedy failures or strengthen resiliency are often time consuming to understand in a large distributed system. The LNA procedure offers a quick and reliable algorithmic visual tool to achieve these. The paper presents work funded by the US Air-Force Research Laboratory (AFRL-EOARD) that demonstrates the potential of network visualization and analysis through the proposed LNA procedure","PeriodicalId":223742,"journal":{"name":"MILCOM 2005 - 2005 IEEE Military Communications Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2005 - 2005 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2005.1605672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A novel procedure of summarizing and abstracting the topology and distributed statistical measures of routing performance for communication networks is presented. This procedure, called logical network abridgment (LNA), forms the basis of a novel resilient recursive routing (R3) protocol. In this paper, we investigate the usefulness of LNA in visualizing and defining the state of health of a communication network. Traditionally, connectivity and metrics (such as link utilization, end-to-end delay, etc.) are used to provide indications of the state of health of a network. However, connectivity alone tells us little about the intrinsic diversity of the network and therefore its resiliency to attacks or attrition. Similarly, individual localized or path specific metrics tell us little about the overall intrinsic capability of the network. The LNA procedure summarizes the metric of choice over the total network and is thus capable of describing the intrinsic state of its health. In the context of military command and control, as well as commercial network management, scenarios, operators wish to easily create well-designed networks, in terms of resiliency and performance. Furthermore, operators need to identify, in an intuitive manner, the vulnerabilities that exist in a network. In addition, the consequences of actions taken to remedy failures or strengthen resiliency are often time consuming to understand in a large distributed system. The LNA procedure offers a quick and reliable algorithmic visual tool to achieve these. The paper presents work funded by the US Air-Force Research Laboratory (AFRL-EOARD) that demonstrates the potential of network visualization and analysis through the proposed LNA procedure