{"title":"Incremental Donor Approach for Immune Plasma Algorithm on Solving Path Planning Problem of UCAV","authors":"Tevfik Erkin, Selçuk Aslan","doi":"10.1109/ICAIoT57170.2022.10121854","DOIUrl":null,"url":null,"abstract":"Immune Plasma algorithm (IP algorithm or IPA) that models the implementation details of a medical method popularized with the COVID-19 pandemic again known as the immune or convalescent plasma has been introduced recently and used successfully for solving different engineering optimization problems. In this study, incremental donor (ID) approach was first developed for controlling how many donor individuals will be chosen before the treatment of receivers representing the poor solutions of the population and then a promising IPA variant called ID-IPA was developed as a new path planner. For analyzing the contribution of the ID approach on the solving capabilities of the IPA, a set of experimental studies was carried out and results of the ID-IPA were compared with different well-known meta-heuristic algorithms. Comparative studies showed that controlling the incrementation of donor individuals as described in the ID approach increases the qualities of the final solutions and improves the stability of the IP algorithm.","PeriodicalId":297735,"journal":{"name":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIoT57170.2022.10121854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immune Plasma algorithm (IP algorithm or IPA) that models the implementation details of a medical method popularized with the COVID-19 pandemic again known as the immune or convalescent plasma has been introduced recently and used successfully for solving different engineering optimization problems. In this study, incremental donor (ID) approach was first developed for controlling how many donor individuals will be chosen before the treatment of receivers representing the poor solutions of the population and then a promising IPA variant called ID-IPA was developed as a new path planner. For analyzing the contribution of the ID approach on the solving capabilities of the IPA, a set of experimental studies was carried out and results of the ID-IPA were compared with different well-known meta-heuristic algorithms. Comparative studies showed that controlling the incrementation of donor individuals as described in the ID approach increases the qualities of the final solutions and improves the stability of the IP algorithm.