Optimizing and enhancing performance of database engine using data clustering technique

Md. Hafizur Rahman, Faisal Bin Al Abid, M. Zaman, M. Akhtar
{"title":"Optimizing and enhancing performance of database engine using data clustering technique","authors":"Md. Hafizur Rahman, Faisal Bin Al Abid, M. Zaman, M. Akhtar","doi":"10.1109/ICAEE.2015.7506830","DOIUrl":null,"url":null,"abstract":"The sizes of databases are increasing every day. Hence, now days, accessing data in an acceptable time is one of the biggest challenges in centralized database. In centralized databases, the records can be categorized according to the access frequencies; least accessed records (cold data) and most accessed records (hot data). In a study it shows that more than 90% cases query are requested for hot data, and in case of insertion operation, 99% are done on hot data. Thus categorizing of the data set may improve data accessibility. In this paper, we are proposing a data clustering mechanism based on data access frequency. We have considered only the hot data and the cold data. Here we divided the whole database into two separate files. The first file contains only hot data and the second file contains only the cold data. The time period of hot and cold data will vary for different application domains. The database engine will have direct access on the first database file and in case of unavailability of data; the database engine will look for the second database file. Finally, the experiment result shows how and why data accessibility time should outperform than other available data clustering techniques.","PeriodicalId":123939,"journal":{"name":"2015 International Conference on Advances in Electrical Engineering (ICAEE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE.2015.7506830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The sizes of databases are increasing every day. Hence, now days, accessing data in an acceptable time is one of the biggest challenges in centralized database. In centralized databases, the records can be categorized according to the access frequencies; least accessed records (cold data) and most accessed records (hot data). In a study it shows that more than 90% cases query are requested for hot data, and in case of insertion operation, 99% are done on hot data. Thus categorizing of the data set may improve data accessibility. In this paper, we are proposing a data clustering mechanism based on data access frequency. We have considered only the hot data and the cold data. Here we divided the whole database into two separate files. The first file contains only hot data and the second file contains only the cold data. The time period of hot and cold data will vary for different application domains. The database engine will have direct access on the first database file and in case of unavailability of data; the database engine will look for the second database file. Finally, the experiment result shows how and why data accessibility time should outperform than other available data clustering techniques.
利用数据聚类技术优化和提高数据库引擎的性能
数据库的大小每天都在增加。因此,如今,在可接受的时间内访问数据是集中式数据库的最大挑战之一。在集中式数据库中,可以根据访问频率对记录进行分类;访问最少的记录(冷数据)和访问最多的记录(热数据)。研究表明,90%以上的查询请求是针对热数据进行的,99%的插入操作是针对热数据进行的。因此,对数据集进行分类可以提高数据的可访问性。本文提出了一种基于数据访问频率的数据聚类机制。我们只考虑了热数据和冷数据。这里我们将整个数据库划分为两个单独的文件。第一个文件只包含热数据,第二个文件只包含冷数据。根据不同的应用领域,热数据和冷数据的时间段会有所不同。数据库引擎将直接访问第一个数据库文件,并在数据不可用的情况下;数据库引擎将查找第二个数据库文件。最后,实验结果显示了数据可访问时间如何以及为什么优于其他可用的数据聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信