L. Sevrin, B. Massot, N. Noury, N. Abouchi, F. Jumel, Jacques Saraydaryan
{"title":"A data fusion system to study synchronization in social activities","authors":"L. Sevrin, B. Massot, N. Noury, N. Abouchi, F. Jumel, Jacques Saraydaryan","doi":"10.1109/HealthCom.2016.7749486","DOIUrl":null,"url":null,"abstract":"As the world population gets older, the healthcare system must be adapted, among others by providing continuous health monitoring at home and in the city. The social activities have a significant role in everyone health status. Hence, this paper proposes a system to perform a data fusion of signals sampled on several subjects during social activities. This study implies the time synchronization of data coming from several sensors whether these are embedded on people or integrated in the environment. The data fusion is applied to several experiments including physical, cognitive and rest activities, with social aspects. The simultaneous and continuous analysis of four subjects cardiac activity and GPS coordinates provides a new way to distinguish different collaborative activities comparing the measurements between the subjects and along time.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As the world population gets older, the healthcare system must be adapted, among others by providing continuous health monitoring at home and in the city. The social activities have a significant role in everyone health status. Hence, this paper proposes a system to perform a data fusion of signals sampled on several subjects during social activities. This study implies the time synchronization of data coming from several sensors whether these are embedded on people or integrated in the environment. The data fusion is applied to several experiments including physical, cognitive and rest activities, with social aspects. The simultaneous and continuous analysis of four subjects cardiac activity and GPS coordinates provides a new way to distinguish different collaborative activities comparing the measurements between the subjects and along time.