Fault Detection for Medical Body Sensor Networks Under Bayesian Network Model

Haibin Zhang, Jiajia Liu, Rong Li
{"title":"Fault Detection for Medical Body Sensor Networks Under Bayesian Network Model","authors":"Haibin Zhang, Jiajia Liu, Rong Li","doi":"10.1109/MSN.2015.21","DOIUrl":null,"url":null,"abstract":"We propose a Bayesian network based method for the fault diagnosis problem of medical body sensor networks used to collect physiological signs to monitor the health of patients. We formalize a Bayesian network to describe the body sensor network considering both the spatial and temporal correlation in measurements at different sensors. Then we give the theoretical analysis of the fault detection, false alarm of this method, and the error probability after executing the fault diagnosis algorithm. Finally, Experiments carried out on synthetic medical datasets by injecting faults into real medical datasets show that the simulation performance matches the theoretical analysis closely, and the proposed approach possesses a good detection accuracy with a low false alarm rate.","PeriodicalId":363465,"journal":{"name":"2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a Bayesian network based method for the fault diagnosis problem of medical body sensor networks used to collect physiological signs to monitor the health of patients. We formalize a Bayesian network to describe the body sensor network considering both the spatial and temporal correlation in measurements at different sensors. Then we give the theoretical analysis of the fault detection, false alarm of this method, and the error probability after executing the fault diagnosis algorithm. Finally, Experiments carried out on synthetic medical datasets by injecting faults into real medical datasets show that the simulation performance matches the theoretical analysis closely, and the proposed approach possesses a good detection accuracy with a low false alarm rate.
基于贝叶斯网络模型的医疗身体传感器网络故障检测
针对医用身体传感器网络的故障诊断问题,提出了一种基于贝叶斯网络的故障诊断方法。我们形式化了一个贝叶斯网络来描述身体传感器网络,同时考虑了不同传感器测量的空间和时间相关性。然后对该方法的故障检测、虚警以及执行故障诊断算法后的错误概率进行了理论分析。最后,通过在真实医疗数据集中注入故障,在合成医疗数据集上进行实验,仿真结果与理论分析结果吻合较好,该方法具有较好的检测精度和较低的虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信