A lower bound for primality

E. Allender, M. Saks, I. Shparlinski
{"title":"A lower bound for primality","authors":"E. Allender, M. Saks, I. Shparlinski","doi":"10.1109/CCC.1999.766257","DOIUrl":null,"url":null,"abstract":"Recent work by Bernasconi, Damm and Shparlinski proved lower bounds on the circuit complexity of the square-free numbers, and raised as an open question if similar (or stronger) lower bounds could be proved for the set of prime numbers. In this short note, we answer this question affirmatively, by showing that the set of prime numbers (represented in the usual binary notation) is not contained in AC/sup 0/ [p] for any prime p. Similar lower bounds are presented for the set of square-free numbers, and for the problem of computing the greatest common divisor of two numbers.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Recent work by Bernasconi, Damm and Shparlinski proved lower bounds on the circuit complexity of the square-free numbers, and raised as an open question if similar (or stronger) lower bounds could be proved for the set of prime numbers. In this short note, we answer this question affirmatively, by showing that the set of prime numbers (represented in the usual binary notation) is not contained in AC/sup 0/ [p] for any prime p. Similar lower bounds are presented for the set of square-free numbers, and for the problem of computing the greatest common divisor of two numbers.
原数的下界
Bernasconi, Damm和Shparlinski最近的工作证明了无平方数的电路复杂度的下界,并提出了一个开放的问题,即是否可以为素数集证明类似(或更强)的下界。在这个简短的说明中,我们肯定地回答了这个问题,通过证明对于任何素数p, AC/sup 0/ [p]中都不包含素数集(用通常的二进制符号表示)。对于无平方数集,以及计算两个数的最大公约数的问题,也给出了类似的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信