Improved Image Retrieval Technology Based on Singular Value Decomposition

Qingyun Zhang, Tianqi Si, Huichao Jiang, Hairui Xing, Siyuan Zheng, Haiyang Geng, Rui Shi
{"title":"Improved Image Retrieval Technology Based on Singular Value Decomposition","authors":"Qingyun Zhang, Tianqi Si, Huichao Jiang, Hairui Xing, Siyuan Zheng, Haiyang Geng, Rui Shi","doi":"10.1109/ICPECA53709.2022.9719225","DOIUrl":null,"url":null,"abstract":"An image retrieval technology combining singular value decomposition, bicubic interpolation and deep learning is proposed. Since the accuracy of image retrieval is affected by the quality of the input image, images with distinct features can accurately match the target image. For image retrieval and feature training that require input images of different scales, traditional image scaling methods will degrade image features. This paper uses singular value decomposition (SVD) and bicubic interpolation algorithm to improve the quality of the zoomed image, so that the deep neural network (DNN) can extract more accurate features. The experimental results show that the proposed algorithm can improve the accuracy of various image retrieval of power grid companies","PeriodicalId":244448,"journal":{"name":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA53709.2022.9719225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An image retrieval technology combining singular value decomposition, bicubic interpolation and deep learning is proposed. Since the accuracy of image retrieval is affected by the quality of the input image, images with distinct features can accurately match the target image. For image retrieval and feature training that require input images of different scales, traditional image scaling methods will degrade image features. This paper uses singular value decomposition (SVD) and bicubic interpolation algorithm to improve the quality of the zoomed image, so that the deep neural network (DNN) can extract more accurate features. The experimental results show that the proposed algorithm can improve the accuracy of various image retrieval of power grid companies
基于奇异值分解的改进图像检索技术
提出了一种结合奇异值分解、双三次插值和深度学习的图像检索技术。由于图像检索的准确性受输入图像质量的影响,具有鲜明特征的图像可以准确匹配目标图像。对于需要输入不同尺度图像的图像检索和特征训练,传统的图像缩放方法会降低图像特征。本文采用奇异值分解(SVD)和双三次插值算法来提高放大图像的质量,使深度神经网络(DNN)能够提取更准确的特征。实验结果表明,该算法可以提高电网公司各种图像检索的准确性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信