A procedure for proving special function inequalities involving a discrete parameter

S. Gerhold, Manuel Kauers
{"title":"A procedure for proving special function inequalities involving a discrete parameter","authors":"S. Gerhold, Manuel Kauers","doi":"10.1145/1073884.1073907","DOIUrl":null,"url":null,"abstract":"We define a class of special function inequalities that contains many classical examples, such as the Cauchy-Schwarz inequality, and introduce a proving procedure based on induction and Cylindrical Algebraic Decomposition. We present an array of non-trivial examples that can be done by our method. Most of them have not been proven automatically before. Some difficult well-known inequalities such as the Askey-Gasper inequality and Vietoris's inequality lie in our class as well, but we do not know if our proving procedure terminates for them.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We define a class of special function inequalities that contains many classical examples, such as the Cauchy-Schwarz inequality, and introduce a proving procedure based on induction and Cylindrical Algebraic Decomposition. We present an array of non-trivial examples that can be done by our method. Most of them have not been proven automatically before. Some difficult well-known inequalities such as the Askey-Gasper inequality and Vietoris's inequality lie in our class as well, but we do not know if our proving procedure terminates for them.
一个证明包含离散参数的特殊函数不等式的程序
我们定义了一类特殊函数不等式,其中包含了许多经典的例子,如Cauchy-Schwarz不等式,并引入了一个基于归纳法和柱面代数分解的证明过程。我们给出了一系列可以用我们的方法完成的重要示例。它们中的大多数之前都没有被自动证明过。一些困难的众所周知的不等式,如Askey-Gasper不等式和Vietoris不等式也在我们的类中,但我们不知道我们的证明过程是否为它们终止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信