Mobile Networks Classification Based on Time-Series Clustering

S. Lu, Bing-yi Qian, Long Zhao, Qiong Sun
{"title":"Mobile Networks Classification Based on Time-Series Clustering","authors":"S. Lu, Bing-yi Qian, Long Zhao, Qiong Sun","doi":"10.1109/ICECE56287.2022.10048650","DOIUrl":null,"url":null,"abstract":"With the increasing complexity of network architecture, the classification of mobile network cells become more important in network operation and maintenance. However, the previous classification method based on manual annotation of scene labeling is inefficient and biased. In this paper, we focus on proposing a data-driven classification method to eliminate the drawbacks of manual annotation. The proposed method extracts the patterns of mobile network on temporal shape and statistical features, and then calculates the fused distance matrix from these two feature sets, K-medoids is leveraged to get the classification labels. We design a series of experiments and analyses to demonstrate the validity of the proposed method, which is based on hourly real data sampled from 9454 mobile cells. The experiments demonstrate that the proposed method achieves good performance on the cell classification of two O&M (Operations and Maintenance) scenarios, and significantly improves the work efficiency.","PeriodicalId":358486,"journal":{"name":"2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE56287.2022.10048650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing complexity of network architecture, the classification of mobile network cells become more important in network operation and maintenance. However, the previous classification method based on manual annotation of scene labeling is inefficient and biased. In this paper, we focus on proposing a data-driven classification method to eliminate the drawbacks of manual annotation. The proposed method extracts the patterns of mobile network on temporal shape and statistical features, and then calculates the fused distance matrix from these two feature sets, K-medoids is leveraged to get the classification labels. We design a series of experiments and analyses to demonstrate the validity of the proposed method, which is based on hourly real data sampled from 9454 mobile cells. The experiments demonstrate that the proposed method achieves good performance on the cell classification of two O&M (Operations and Maintenance) scenarios, and significantly improves the work efficiency.
基于时间序列聚类的移动网络分类
随着网络结构的日益复杂,移动网络单元的分类在网络运维中变得越来越重要。然而,以往基于手动标注场景标签的分类方法效率低下且存在一定的偏差。本文重点提出了一种数据驱动的分类方法,以消除手工标注的缺点。该方法提取移动网络在时间形状和统计特征上的模式,然后计算这两个特征集的融合距离矩阵,利用K-medoids得到分类标签。我们设计了一系列的实验和分析来证明该方法的有效性,该方法基于从9454个移动基站采样的每小时真实数据。实验表明,该方法在两种运维场景的单元分类上取得了良好的性能,显著提高了工作效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信