Enhanced Adaptive Locality Preserving Projections for Face Recognition

Jun Fan, Qiaolin Ye, Ning Ye
{"title":"Enhanced Adaptive Locality Preserving Projections for Face Recognition","authors":"Jun Fan, Qiaolin Ye, Ning Ye","doi":"10.1109/ACPR.2017.123","DOIUrl":null,"url":null,"abstract":"In this paper, we address the graph-based manifold learning method for face recognition. The proposed method is called enhanced adaptive Locality Preserving Projections. The EALPP integrates four properties: (i) introduction of data label information and parameterless computation of affinity matrix, (ii) QR-decomposition for acceleration of the eigenvector computation, (iii) matrix exponential for solving the problem of singular matrix and (iv) processing of uncorrelated vector of projection matrix. EALPP has been integrated two techniques: Maximum Margin Criterion (MMC) and Locality Preserving Projections (LPP). Face recognition test on four public face databases (ORL, Yale, AR and UMIST) and experimental results demonstrate the effectiveness of EALPP.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we address the graph-based manifold learning method for face recognition. The proposed method is called enhanced adaptive Locality Preserving Projections. The EALPP integrates four properties: (i) introduction of data label information and parameterless computation of affinity matrix, (ii) QR-decomposition for acceleration of the eigenvector computation, (iii) matrix exponential for solving the problem of singular matrix and (iv) processing of uncorrelated vector of projection matrix. EALPP has been integrated two techniques: Maximum Margin Criterion (MMC) and Locality Preserving Projections (LPP). Face recognition test on four public face databases (ORL, Yale, AR and UMIST) and experimental results demonstrate the effectiveness of EALPP.
增强的自适应局部保持投影人脸识别
本文研究了基于图的流形学习方法在人脸识别中的应用。该方法被称为增强自适应局部保持投影。EALPP集成了四个特性:(1)引入数据标签信息和亲和矩阵的无参数计算;(2)qr分解加速特征向量计算;(3)矩阵指数求解奇异矩阵问题;(4)投影矩阵的不相关向量处理。EALPP融合了最大边界准则(MMC)和局部保持投影(LPP)两种技术。在四个公共人脸数据库(ORL、Yale、AR和UMIST)上的人脸识别测试和实验结果表明了EALPP的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信