No-Reference Stereoscopic Image Quality Assessment Based On Visual Attention Mechanism

Sumei Li, Ping Zhao, Yongli Chang
{"title":"No-Reference Stereoscopic Image Quality Assessment Based On Visual Attention Mechanism","authors":"Sumei Li, Ping Zhao, Yongli Chang","doi":"10.1109/VCIP49819.2020.9301770","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an optimized model based on the visual attention mechanism(VAM) for no-reference stereoscopic image quality assessment (SIQA). A CNN model is designed based on dual attention mechanism (DAM), which includes channel attention mechanism and spatial attention mechanism. The channel attention mechanism can give high weight to the features with large contribution to final quality, and small weight to features with low contribution. The spatial attention mechanism considers the inner region of a feature, and different areas are assigned different weights according to the importance of the region within the feature. In addition, data selection strategy is designed for CNN model. According to VAM, visual saliency is applied to guide data selection, and a certain proportion of saliency patches are employed to fine tune the network. The same operation is performed on the test set, which can remove data redundancy and improve algorithm performance. Experimental results on two public databases show that the proposed model is superior to the state-of-the-art SIQA methods. Cross-database validation shows high generalization ability and high effectiveness of our model.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we proposed an optimized model based on the visual attention mechanism(VAM) for no-reference stereoscopic image quality assessment (SIQA). A CNN model is designed based on dual attention mechanism (DAM), which includes channel attention mechanism and spatial attention mechanism. The channel attention mechanism can give high weight to the features with large contribution to final quality, and small weight to features with low contribution. The spatial attention mechanism considers the inner region of a feature, and different areas are assigned different weights according to the importance of the region within the feature. In addition, data selection strategy is designed for CNN model. According to VAM, visual saliency is applied to guide data selection, and a certain proportion of saliency patches are employed to fine tune the network. The same operation is performed on the test set, which can remove data redundancy and improve algorithm performance. Experimental results on two public databases show that the proposed model is superior to the state-of-the-art SIQA methods. Cross-database validation shows high generalization ability and high effectiveness of our model.
基于视觉注意机制的无参考立体图像质量评价
本文提出了一种基于视觉注意机制(VAM)的无参考立体图像质量评价(SIQA)优化模型。基于双注意机制(dual attention mechanism, DAM)设计了一个CNN模型,该模型包括通道注意机制和空间注意机制。通道注意机制对最终质量贡献大的特征给予高权重,对最终质量贡献小的特征给予小权重。空间注意机制考虑特征的内部区域,根据特征内区域的重要程度,对不同区域赋予不同的权重。此外,针对CNN模型设计了数据选择策略。根据VAM,利用视觉显著性来指导数据选择,并利用一定比例的显著性补丁对网络进行微调。在测试集上执行相同的操作,可以消除数据冗余,提高算法性能。在两个公共数据库上的实验结果表明,该模型优于目前最先进的SIQA方法。跨数据库验证表明,该模型具有较高的泛化能力和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信