Differentially Private Moving Object Database Publication in Location Tracking Service

Zheng Huo, Teng Wang, Ping He
{"title":"Differentially Private Moving Object Database Publication in Location Tracking Service","authors":"Zheng Huo, Teng Wang, Ping He","doi":"10.1145/3007120.3007149","DOIUrl":null,"url":null,"abstract":"Location tracking applications which receives frequent updates of a moving object's position, collect numerous moving objects' location data. Public transit agencies can make use of tracking data to optimize traffic control strategies. While improper use of trajectory data could cause individuals' privacy leakage. However, existing privacy-preserving techniques are unable to provide sufficient privacy protection. In this paper, we propose a data-dependent differentially private sanitization algorithm to publish moving object database. Moreover, we make use of a set of real-world constraints to conduct constraint inference, which can boost the utility of the published data. At last, we experimentally evaluate the utility of the sanitized data in terms of range-count queries, results show high utility and efficiency of our proposal.","PeriodicalId":394387,"journal":{"name":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007120.3007149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Location tracking applications which receives frequent updates of a moving object's position, collect numerous moving objects' location data. Public transit agencies can make use of tracking data to optimize traffic control strategies. While improper use of trajectory data could cause individuals' privacy leakage. However, existing privacy-preserving techniques are unable to provide sufficient privacy protection. In this paper, we propose a data-dependent differentially private sanitization algorithm to publish moving object database. Moreover, we make use of a set of real-world constraints to conduct constraint inference, which can boost the utility of the published data. At last, we experimentally evaluate the utility of the sanitized data in terms of range-count queries, results show high utility and efficiency of our proposal.
位置跟踪服务中差分私有移动对象数据库发布
位置跟踪应用程序接收移动对象位置的频繁更新,收集大量移动对象的位置数据。公共交通机构可以利用跟踪数据来优化交通控制策略。而轨迹数据的不当使用可能会导致个人隐私泄露。然而,现有的隐私保护技术无法提供足够的隐私保护。本文提出了一种基于数据的差分私有清理算法来发布移动对象数据库。此外,我们利用一组现实世界的约束进行约束推理,这可以提高发布数据的实用性。最后,我们在距离计数查询方面对净化数据的效用进行了实验评估,结果表明我们的建议具有很高的效用和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信