Fourier transform for the spatial quincunx lattice

Markus Püschel, M. Rötteler
{"title":"Fourier transform for the spatial quincunx lattice","authors":"Markus Püschel, M. Rötteler","doi":"10.1109/ICIP.2005.1530100","DOIUrl":null,"url":null,"abstract":"We derive a new, two-dimensional nonseparable signal transform for computing the spectrum of spatial signals residing on a finite quincunx lattice. The derivation uses the connection between transforms and polynomial algebras, which has long been known for the discrete Fourier transform (DFT), and was extended to other transforms in recent research. We also show that the new transform can be computed with O(n/sup 2/ log(n)) operations, which puts it in the same complexity class as its separable counterparts.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2005.1530100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We derive a new, two-dimensional nonseparable signal transform for computing the spectrum of spatial signals residing on a finite quincunx lattice. The derivation uses the connection between transforms and polynomial algebras, which has long been known for the discrete Fourier transform (DFT), and was extended to other transforms in recent research. We also show that the new transform can be computed with O(n/sup 2/ log(n)) operations, which puts it in the same complexity class as its separable counterparts.
空间五方阵的傅里叶变换
我们推导了一种新的二维不可分信号变换,用于计算空间信号在有限五方阵上的频谱。该推导利用了变换与多项式代数之间的联系,这种联系在离散傅里叶变换(DFT)中早已为人所知,并在最近的研究中推广到其他变换中。我们还表明,新的变换可以用O(n/sup 2/ log(n))次运算来计算,这使得它与可分离的对应函数处于相同的复杂度类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信