On the Sensitivity Complexity of k-Uniform Hypergraph Properties

Qian Li, Xiaoming Sun
{"title":"On the Sensitivity Complexity of k-Uniform Hypergraph Properties","authors":"Qian Li, Xiaoming Sun","doi":"10.1145/3448643","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the sensitivity complexity of hypergraph properties. We present a k-uniform hypergraph property with sensitivity complexity O(n(⌈k/3⌉) for any k≥3, where n is the number of vertices. Moreover, we can do better when k≡1 (mod 3) by presenting a k-uniform hypergraph property with sensitivity O(n⌈k/3⌉-1/2). This result disproves a conjecture of Babai, which conjectures that the sensitivity complexity of k-uniform hypergraph properties is at least Ω (nk/2). We also investigate the sensitivity complexity of other symmetric functions and show that for many classes of transitive Boolean functions the minimum achievable sensitivity complexity can be O(N1/3), where N is the number of variables.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we investigate the sensitivity complexity of hypergraph properties. We present a k-uniform hypergraph property with sensitivity complexity O(n(⌈k/3⌉) for any k≥3, where n is the number of vertices. Moreover, we can do better when k≡1 (mod 3) by presenting a k-uniform hypergraph property with sensitivity O(n⌈k/3⌉-1/2). This result disproves a conjecture of Babai, which conjectures that the sensitivity complexity of k-uniform hypergraph properties is at least Ω (nk/2). We also investigate the sensitivity complexity of other symmetric functions and show that for many classes of transitive Boolean functions the minimum achievable sensitivity complexity can be O(N1/3), where N is the number of variables.
关于k-一致超图性质的灵敏度复杂度
在本文中,我们研究了超图属性的敏感性复杂度。对于任意k≥3,我们给出了一个灵敏度复杂度为O(n(≤k/3))的k-一致超图性质,其中n为顶点数。此外,当k≡1 (mod 3)时,我们可以通过提出灵敏度为O(n≤k/3≤1/2)的k-均匀超图性质来做得更好。这一结果反驳了Babai关于k-一致超图性质的灵敏度复杂度至少为Ω (nk/2)的猜想。我们还研究了其他对称函数的灵敏度复杂度,并证明了对于许多类传递布尔函数,最小可达到的灵敏度复杂度可以是O(N /3),其中N是变量的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信