Kai Lu, Nannan Zhao, Ji-guang Wan, Changhong Fei, Wei Zhao, Tongliang Deng
{"title":"RLRP: High-Efficient Data Placement with Reinforcement Learning for Modern Distributed Storage Systems","authors":"Kai Lu, Nannan Zhao, Ji-guang Wan, Changhong Fei, Wei Zhao, Tongliang Deng","doi":"10.1109/ipdps53621.2022.00064","DOIUrl":null,"url":null,"abstract":"Modern distributed storage systems with massive data and storage nodes pose higher requirements to the data placement strategy. Furthermore, with emerged new storage devices, heterogeneous storage architecture has become increasingly common and popular. However, traditional strategies expose great limitations in the face of these requirements, especially do not well consider distinct characteristics of heterogeneous storage nodes yet, which will lead to suboptimal performance. In this paper, we present and evaluate the RLRP, a deep reinforcement learning (RL) based replica placement strategy. RLRP constructs placement and migration agents through the Deep-Q-Network (DQN) model to achieve fair distribution and adaptive data migration. Besides, RLRP provides optimal performance for heterogeneous environment by an attentional Long Short-term Memory (LSTM) model. Finally, RLRP adopts Stagewise Training and Model fine-tuning to accelerate the training of RL models with large-scale state and action space. RLRP is implemented on Park and the evaluation results indicate RLRP is a highly efficient data placement strategy for modern distributed storage systems. RLRP can reduce read latency by 10%∼50% in heterogeneous environment compared with existing strategies. In addition, RLRP is used in the real-world system Ceph, which improves the read performance of Ceph by 30%∼40%.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Modern distributed storage systems with massive data and storage nodes pose higher requirements to the data placement strategy. Furthermore, with emerged new storage devices, heterogeneous storage architecture has become increasingly common and popular. However, traditional strategies expose great limitations in the face of these requirements, especially do not well consider distinct characteristics of heterogeneous storage nodes yet, which will lead to suboptimal performance. In this paper, we present and evaluate the RLRP, a deep reinforcement learning (RL) based replica placement strategy. RLRP constructs placement and migration agents through the Deep-Q-Network (DQN) model to achieve fair distribution and adaptive data migration. Besides, RLRP provides optimal performance for heterogeneous environment by an attentional Long Short-term Memory (LSTM) model. Finally, RLRP adopts Stagewise Training and Model fine-tuning to accelerate the training of RL models with large-scale state and action space. RLRP is implemented on Park and the evaluation results indicate RLRP is a highly efficient data placement strategy for modern distributed storage systems. RLRP can reduce read latency by 10%∼50% in heterogeneous environment compared with existing strategies. In addition, RLRP is used in the real-world system Ceph, which improves the read performance of Ceph by 30%∼40%.