Bounding NBLM neighbourhood's adequate sizes

R. Mayoral, G. Lera
{"title":"Bounding NBLM neighbourhood's adequate sizes","authors":"R. Mayoral, G. Lera","doi":"10.1109/ICONIP.2002.1198960","DOIUrl":null,"url":null,"abstract":"We try to address the problem of a priori selection of the adequate size for NBLM neighbourhoods. The application of the concept of neural neighbourhood to the Levenberg-Marquardt optimization method led us to the development of the NBLM algorithm. When this algorithm is used, there can be neighbourhoods that, not only produce significant reductions in memory requirements, but that also achieve better time performance than that of the Levenberg-Marquardt method. However, as long as the problem of choosing an appropriate neighbourhood size is not solved, the NBLM algorithm will not be able to offer the best possible performance.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We try to address the problem of a priori selection of the adequate size for NBLM neighbourhoods. The application of the concept of neural neighbourhood to the Levenberg-Marquardt optimization method led us to the development of the NBLM algorithm. When this algorithm is used, there can be neighbourhoods that, not only produce significant reductions in memory requirements, but that also achieve better time performance than that of the Levenberg-Marquardt method. However, as long as the problem of choosing an appropriate neighbourhood size is not solved, the NBLM algorithm will not be able to offer the best possible performance.
限定NBLM社区的足够大小
我们试图解决为NBLM社区选择适当大小的先验问题。将神经邻域概念应用到Levenberg-Marquardt优化方法中,导致了NBLM算法的发展。当使用该算法时,可能存在这样的邻域,不仅可以显著减少内存需求,而且还可以获得比Levenberg-Marquardt方法更好的时间性能。然而,只要选择合适的邻域大小的问题没有解决,NBLM算法就不能提供最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信